Article Data

  • Views 192
  • Dowloads 107

Original Research

Open Access

VEGF induces phosphorylation of STAT3 through binding VEGFR2 in ovarian carcinoma cells in vitro

  • W. Lu1
  • H. Chen2
  • F. Ye2
  • F. Wang1
  • X. Xie1,*,

1Department of Gynecologic Oncology, China

2Department of Gynecologic Oncology, China

DOI: 10.12892/ejgo200604363 Vol.27,Issue 4,July 2006 pp.363-369

Published: 10 July 2006

*Corresponding Author(s): X. Xie E-mail:

Abstract

VEGF plays a key role in ovarian carcinoma. Recent studies have shown that expressions of VEGF and its receptors were correlated with signal tranducer phosphorylation and activators of transcription 3(p-STAT3) in ovarian carcinoma. The aim of this study was to investigate the effects of STAT3 phosphorylation on VEGF signaling pathways in ovarian carcinoma cells. We selected an ovarian carcinoma cell line Caov-3 as a target cell that co-expressed VEGFR2 and p-STAT3. We detected expressions of p-STAT3 in Caov-3 induced by VEGF with different concentrations and for different effect times by immunocytochemistry and Western Blot. A concentration of 50 ng/ml VEGF was enough to increase phosphorylation of STAT3, and at 30 min, the p-STAT3 level reached the peak and showed nuclear translocation of p-STAT3 from the cytoplasm to the nucleus. These effects could be overcome by a small peptide (ATWLPPR) specific for VEGFR2. Taken together, VEGF-induced phosphorylation and nuclear translocation of STAT3 and ATWLPPR could effectively block the VEGF effects, suggesting that phosphorylation of STAT3 participates in VEGF signal transduction via VEGFR2 in ovarian carcinoma cells.


Keywords

Ovarian neoplasm; VEGF; VEGFR; STAT; Signaling

Cite and Share

W. Lu,H. Chen,F. Ye,F. Wang,X. Xie. VEGF induces phosphorylation of STAT3 through binding VEGFR2 in ovarian carcinoma cells in vitro. European Journal of Gynaecological Oncology. 2006. 27(4);363-369.

References

[1] Santin A.O., Hermonat P.L., Ravaggi A., Cannon M.J., Pecorellt S., Parham G.P.: "Secretion of vascular endothelial growth factor in ovarian cancer". Eur. J. Gynaecol. Oncol., 1999, 20, 177.

[2] Chen C.A., Cheng W.F., Lee C.N., Chen T.M., Kung C.C., Hsieh F.J. et al.: "Serum vascular endothelial growth factor in epithelial ovarian neoplasms: correlation with patient survival". Gynecol. Oneal., 1999, 74, 235.

[3] Carmeliet P., Jain R.K.: "Angiogenesis in cancer and other disease". Nature, 2000, 407, 249.

[4] Takahashi T., Ueno H., Shibuya M.: "VEGF activates protem kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells". Oncogene, 1999, 18, 2221.

[5] OzakiH.,Seo M.S., Ozaki K., Yamada H., Yamada E., Okamoto N. et al.: "Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization". Am. J. Pathol., 2000, 56, 697.

[6] Wu L.W., Mayo L.D., Dunbar J.D., Kessler K.M., Baerwald M.R., Jaffe E.A. et al.: "Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation". J. Biol. Chem., 2000, 275, 5096.

[7] Jiang B.H., Zheng J.Z., Aoki M., Vogt P.K.: "Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells". Proc. Natl. Acad. Sci USA, 2000, 97, 1749.

[8] Suzuma K., Naruse K., Suzuma I., Takahara N., Ueki K., Aiello L.P. et al.: "Vascular endothelial growth factor induces expression of connective tissue growth factor via KOR, Flt 1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells". J. Biol. Chem., 2000, 275, 40725.

[9] Berclaz G., Altermatt H.J., Rohrbach V., Siragusa A., Dreher E., Smith P.O.: " EGFR dependent expression of STAT3 ( but not STAT]) in breast cancer". Int. J. Oncol., 2001, 19, 1155.

[10] Song J.I.,G randis J.R.: "STAT signaling in head and neck cancer". Oncogene, 2000, 19, 2489.

[11] Wang Y.Z., W harton W., Garcia R., Kraker A., Jove R., Pledger W.J.: "Activation of Stat3 preassembled with platelet-derived growth factor beta receptors requires Src kinase activity". Oncogene, 2000, 19, 2075.

[12] Enaida H., Kabuyama Y., Oshima Y., Sakamoto T., Kato K., Koch1 H. et al.: "VEGF-dependent signaling in retinal microvascular endothelial cells". J. Med. Sci, 1999, 45, 77.

[13] Bartoli M., Gu X., Tsai N.T.,V enema R.C.,B rooks S.E., Marrero M.B. et al.: "Vascular endothelial growth factor activates STAT proteins in aortic endothelial cells". J. Biol. Chem., 2000, 275, 33189.

[14] Meister B.,G runebach F.,B autz F.,B rugger W.,F ink FM.,K anz L et al.: "Expression of vascular endothelial growth factor and its receptors in human neuroblastoma". Eu1: J. Cancer, 1999, 35, 445.

[15] Ferrer FA., Miller L.J., Lindquist R., Kowalczyk P., Laudone V.P., Albertsen P.C. et al.: "Expression of vascular endothelial growth factor receptor in human prostate cancer". Urology, 1999, 54, 567.

[16] Jackson M.W., Roberts J.S., Heckford S.E., Ricciardelli C., Stahl J., Choong C. et al.: "A potential autocrine role for vascular endothelial growth factor in prostate cancer". Cancer Res., 2002, 62, 854.

[17] Masood R., Cai J., Zheng T., Smith D.L., Hinton D.R., Gill P.S. "Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-pos山ve human tumors". Blood, 2001, 98, 904.

[18] Lin J., Jin X., Rothman K., Lin H.J., Tang H., Burke W.: "Modulation of signal transducer and activator of transcription 3 activities by p53 tumor suppressor in breast cancer cells". Cancer Res., 2002,62, 376.

[19] Burke W.M., Jin X., Lin H.J., Huang M., Liu R., Reynolds R.K et al.: "Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells". Oncogene, 2001, 20, 7925.

[20] Gao B., Shen X., Kunos G., Meng Q., Goldberg I.D., Rosen E.M., et al.: "Constitutive activation of JAK-STAT3 signaling by BRCA l in human prostate cancer cells". FEBS Lett., 2001, 488, 179.

[21] Benekli M., Xia Z., Donohue K.A., Ford L.A., P ixley L.A., Baer M.R. et al.: "Constitutive activity of signal transducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease-free survival". Blood., 2002, 99, 252.

[22] Huang M., Page C., Reynolds R.K., Lin J.: "Constitutive activation of Stat3 oncogene product in human ovarian carcinoma cells" Gynecol. Oncol., 2000, 79, 67.

[23] Li L.. Shaw P.E.: "Autocrine-mediated activation of STAT3 correlates with cell proliferation in bresast carcinoma lines". J. Biol. Chem., 2002, 277, 17397.

[24] Bowman T., Garcia R., Turkson J., Jove R.: "STATs m oncogenesis". Oncogene, 2000, 19, 2474

[25] Imada K., Leonard W.J.: " T he Jak-STAT pathway". Mol Immunol., 2000, 37, 1.

[26] Grandis J.R., Drenning S.D., Zeng Q., Watkins S.C., Melhem M.F., Endo S. et al.: "Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo" Proc. Natl. Acad. Sci USA, 2000, 97, 4227.

[27] Ma Z.Z., Han X., Liu S.F.: "Diagnostic Cytopathology". Henan Scientific and Technical Publishing House, I" edition, 2000, 823.

[28] Schuringa J.J., Timmer H., Luttickhuizen D., Vellenga E., Kruijer W.: "c-Jun and c-Fos cooperate with STAT3 in IL-6-induced transactivation of the IL-6 response element IRE". Cytokine, 2001,14, 78.

[29] Shen Y., Devgan G., Darnell J.E., Bromberg J.F.: "Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat!". Proc. Natl. Acad. Sc. USA, 2001, 98, 1543.

[30] Rebbaa A., Chou P.M., Mirkin B.L.: "Factors secreted by human neuroblastoma mediated doxorubicin resistance by activating STAT3 and inh伽ting apoptosis". Mo/. Med., 2001, 7, 393.

[31] Epling Burnette P.K., Liu J.H., Catlett-Falcone R., Turkson J., Oshiro M., Kothapalli R. et al.: "Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased MelI expression". J. Clin. Invest., 2001, 107, 351.

[32] Schaefer L.K., Ren Z., Fuller G.N., Schaefer T.S.: "Constitutive activation of STAT3a in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2)". Oncogene, 2002, 21, 2058.

[33] Niculescu F., Soane L., Badea T., Shin M., Rus H.: "Tyrosme phosphorylation and activation of Janus kinase I and STAT3 by sublytic CSb-9 complement complex in aortic endothelial cells". Immunopharmacology, 1999, 42, 187.

[34] Hoey T.,S chindler U.: "STAT structure and function in signaling" Curr. Opin. Genet. Devel., 1998, 8, 582.

[35] Wery-Zennaro S., Letourneur M.,D avid M.,B ertoglio J.,P ierre J "Binding of IL-4 to the IL- l 3Ral/IL-4Ra receptor complex leads to STAT3 phosphorylation but not to its nuclear translocation". FEES Lett., 1999, 464, 91.

[36] Zhang Q., Raghunath P.N., Xue L., Majewski M., Carpentlen D.F., Odum N. et al.: "Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma". J. Immunol., 2002, 168, 466.

[37] Zamo A., Chiarle R., Piva R., Howes J., Fan Y., Chilosi M. et al "Anaplastic lymphoma kinase (ALK) activates STAT3 and protects hematopoietic cells from cell death". Oncogene, 2002, 21, 1038.

[38] Korpelainen E.l.,K arkkainen M., Gunji Y.,V ikkula M.,A litalo K "Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response". Oncogene, 1999, 18, 1.

[39] Binetruy-Tournaire R., Demangel C., Malavaud B., Vassy R., Rouyre S., Kraemer M. et al.: " Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis". EMBO J., 2000, 19, 1525.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top