Article Data

  • Views 244
  • Dowloads 118

Original Research

Open Access

Technetium-99m-sestamibi scintigraphy in gynecological cancer imaging

  • J. Stelmachów1,*,
  • A. Timorek-Lemieszczuk1

1Chair and Department of Obstetrics, Gynecology and Oncology, II Faculty of Medicine. Medical University of Warsaw, Poland

DOI: 10.12892/ejgo200804309 Vol.29,Issue 4,July 2008 pp.309-312

Published: 10 July 2008

*Corresponding Author(s): J. Stelmachów E-mail: klingi@amwaw.edu.pl

Abstract

A new diagnostic method, technetium-99m-sestamibi scintigraphy, and its potential use in gynecological oncology is described. The biochemical mechanisms of uptake and retention of technetium-99m-sestamibi in neoplastic cells are presented and the grounds for the potential use of the tracer in predicting the response to first-line chemotherapy in ovarian cancer patients are discussed. Based on the available literature data and on our own studies, the sensitivity and specificity of technetium-99m-sestamibi scintigraphy in ovarian cancer diagnosis are assessed, and the current place of this method among other functional imaging methods applied in gynecological oncology is discussed. Technetium-99m-sestamibi scintigraphy seems to provide an attractive alternative method to the expensive PET imaging, and can be easily performed in most hospitals. However, further studies in a larger series of patients are necessary before this method is widely applied.

Keywords

99mTc-sestamibi scintigraphy; Ovarian cancer; Chemotherapy

Cite and Share

J. Stelmachów,A. Timorek-Lemieszczuk. Technetium-99m-sestamibi scintigraphy in gynecological cancer imaging. European Journal of Gynaecological Oncology. 2008. 29(4);309-312.

References

[1] Kahn J.K., McGhie I., Akers M.S., Sills M.N., Faber T.L., Kulkarni P.V. et al.: “Quantitative rotational tomography with 201TI and 99mTc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease”. Circulation, 1989, 79, 1282.

[2] Chiu M.L., Kronauge J.F., Piwnica Worms D.: “Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2 methoxyisobutyl isonitrile) technetium in cultured mouse fibroblasts”. J. Nucl. Med., 1990, 31, 1646.

[3] Piwnica-Worms D., Kronauge J.F., Chiu M.L.: “Enhancement by tetraphenylorate of Tc-99m-MIBI uptake kinetics and accumulation in cultured chick heart cells”. J. Nucl Med., 1991, 32, 1992.

[4] Hassan I.M., Sahweil A., Constantinides C.: “Uptake and kinetics of Tc99m hexakis 2-methoxyisobutyl isonitrile in benign and malignant lesions in the lungs”. Clin. Nucl. Med., 1989, 14, 330.

[5] Caner B., Kitapci M., Areas T., Erbengi G., Ugur O., Bekdik C.: “Increase accumulation of sestamibi technetium in osteosarcoma and its metastatic lymph nodes”. J. Nucl. Med., 1991, 32, 1977.

[6] O’Tauma L.A., Packard A.B., Treves S.T.: “SPECT imaging of pediatric brain tumor with hexakis (methoxyisobutylnitryle) technetium”. J. Nucl. Med., 1990, 31, 2040.

[7] Aktolun C., Bayhan H., Kir M.: “Clinical experience with Tc-99m mibi imaging in patients with malignant tumours. Preliminary results and comparison with TI-201”. Clin. Nucl. Med., 1992, 17, 171.

[8] Dadparvar S., Chevres A., Tulchinsky M., Krischna-Badrinath L., Khan A.S., Slizofski W.J.: “Clinical utility of technetium-99m methoxyisobutylisonitrole imaging in differentiated thyroid carcinoma: comparison in thalium-201 and iodine-131 Na scintigraphy, and serum thyroglobulin quantitation”. Eur. J. Nucl. Med., 1995, 22, 1330.

[9] Khalkhali I., Cutrone J.A., Mena I.: “Scintimammography: the complementary role of Tc-99m sestamibi prone breast imaging for the diagnosis of breast carcinoma”. Radiology, 1995, 196, 421.

[10] Aktolun C., Bayhan H., Pabucco Y.: “Assessment of tumor necrosis and detection of mediastinal lymph node metastases in bronchial carcinoma with technetium-99m sestamibi imaging: comparison with CT scan”. Eur. J. Nucl. Med., 1994, 21, 973.

[11] Naddaf S.Y., Akisik M.F., Aziz M., Omar W.S., Hirschfeld A., Masdeu J. et al.: “Comparison between 201 TI-chloride and 99Tcm-sestamibi SPECT brain imaging for differentiating intracranial lymphoma from non-malignant lesions in AIDS patients”. Nucl. Med. Commun., 1998, 19, 47.

[12] Zor E., Stokkel M.P., Ozalp S., Vardarelli E., Yalcin O.T., Ak I.: “F18-FDG coincidence-PET in patients with suspected gynecological malignancy”. Acta Radiol., 2006, 47, 612.

[13] Grisaru D., Almog B., Levine C., Metser U., Fishman A., lerman H.: “The diagnostic accuracy of 18F-fluorodeoxyglucose PET/CT in patients with gynecological malignancies”. Gynecol. Oncol., 2004, 94, 680.

[14] Havrilesky L.J., Kulasingam S.L., Matchar D.B., Myers E.R.: “FDG-PET for management of cervical and ovarian cancer”. Gynecol. Oncol., 2005, 97, 183.

[15] Lai C.H., Yen T.C., Chang T.C.: “Positron emission tomography imaging for gynecologic malignancy”. Curr. Opin. Obstet. Gynecol., 2007, 19, 37.

[16] Sironi S., Buda A., Picchio M., Perygo P., Moreni R., Pellegrini A. et al.: “Lymph-node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT”. Radiology, 2006, 238, 227.

[17] Bellomi M., Bonomo G., Landoni F., Villa G., Leon M.E., Bacciolone L. et al.: “Accuracy of computed tomography and magnetic resonance imaging in the detection of lymph node involvement in cervix carcinoma”. Eur. Radiol., 2005, 15, 2469.

[18] Królicki L., Stelmachów J., C´wikla J.B.: “Evaluation of th Tc99m mibi uptake in patients with suspected ovarian cancer. Initial study”. Eur. J. Nucl. Med., 1998, 25, 1014.

[19] Riche R.J.: “A critical assessment of the use of lipophilic cations as membrane potential probes”. Prog. Biophys Mol. Biol., 1984, 42, 1.

[20] Piwnica-Worms D., Kronauge J.F., Delmon L., Holman B.L., Marsh J.D., Jones A.G.: “Effect of metabolic inhibition on technetium-99m-MIBI kinetics in cultured chick myocardial cells”. J. Nucl. Med., 1990, 31, 464.

[21] Piwnica-Worms D., Kronauge J.F., Chiu M.L.: “Uptake and retension of hexakis (2-methoxyisobutyl isonitrile) technetium (I) in cultured chick myocardial cells”. Circulation, 1990, 82, 1826.

[22] Kronauge J.F., Chiu M.L., Cone J.S., Davison A., Holman B.L., Jones A.G., Piwnica-Worms D.: “Comparison of neutral and cationic myocardial perfusion agents: characteristics of accumulation in cultured cells”. Nucl. Med. Biology, 1992, 19, 141.

[23] Crane P., Laliberte R., Heminway S., Thoolen M., Orlandi C.: “Effect of mitochondrial viability and metabolism on technetium-99-m-sestamibi myocardial retension”. Eur. J. Nucl. Med., 1993, 20, 20.

[24] Backus M., Piwnica-Worms D., Hockett D., Kronauge J., Lieberman M., Ingram P., LeFurgey A.: “Microprobe analysis of Tc-MIBI in heart cells: calculation of mitochondrial membrane potential”. Am. J. Physiol., 1993, 265, 178.

[25] Chernoff D.M., Strichartz G.R., Piwnica-Worms D.: “Membrane potential determination in large unilamellar vesicles with hexakis (2-methoxyisobutylisonitrile) technetium (I)”. Biochim. Biophys Acta, 1993, 1147, 262.

[26] Piwnica-Worms D., Chiu M. L., Budding M., Kronauge J.F., Kramer R.A., Croop J.M.: “Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex”. Cancer Res., 1993, 53, 977.

[27] Piwnica-Worms D., Rao V.V., Kronauge J.F., Croop J.M.: “Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation”. Biochemistry, 1995, 34, 12210.

[28] Ling V.: “Drug resistance and membrane alteration in mutants of mammalian cells”. Can J. Genet. Cytol., 1975, 17, 503.[29] Juliano R.L., Ling V.: “A surface glycoprotein modulation drug permeability in Chinese hamster ovary cell mutants”. Biochim. Biophys. Acta, 1976, 455, 152.

[30] Muzzammil T., Moore M.J., Ballinger J.R.: “In Vitro comparison of sestaMIBI, Tetrofosmin, and furifosmin as agents for functional imaging of multidrug resistence in tumors”. Cancer Biother. Radiopharm., 2000, 15, 339.

[31] Chin K.V., Pastan I., Gottesman M.M.: “Function and regulation of the human multidrug resistance gene”. Adv. Cancer Res., 1993, 60, 157.

[32] Rao V.V., Chiu M.L., Kronauge J.F., Piwnica-Worms D.: “Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi”. J. Nucl. Med., 1994, 35, 510.

[33] Lucker G.D., Fracasso P.M., Dobkin J., Piwnica-Worms D.: “Modulation of the multidrug resistance P-glycoprotein: detection with technetium- 99m-sestamibi in vivo”. J. Nucl. Med., 1997, 38, 369.

[34] Takamura Y., Miyoshi Y., Taguchi T., Noguchi S.: “Prediction of chemotherapeutic responce by Technetium 99m-MIBI scintigraphy In breast carcinoma patients”. Cancer, 2001, 92, 232.

[35] Fuster D., Munoz M., Pavia J., Palacin A., Bellet N., Mateos J.J. et al.: “Quantified 99m TC-MIBI scintigraphy for predicting chemotherapy response in breast cancer patients: factors that influence the level of 99m Tc-MIBI uptake”. Nucl. Med. Commun., 2002, 23, 31.

[36] Soler C., Perrot J.L., Thiffet O., Beauchesne P., Lanthier K., Boucheron S. et al.: “The role of technetium-99m sestamibi single proton emission tomography in the follow-up of malignant melanoma and detection of lymph node metastases”. Eur. J. Nucl. Med., 24, 1522.

[37] Alonso O., Delgado L., Nunez M., Vargas C., Lopera J., Andruskevicius P. et al.: “Predictive value of 99mTc-sestamibi scintigraphy in the evaluation of doxorubicin based chemotheraphy response in patients with advanced breast cancer”. Nucl. Med. Commun.,2002, 23, 765.

[38] Del Vecchio S., Salvatore M.: “99m Tc-MIBI in the evaluation of breast cancer biology”. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31 (suppl.1), 88.

[39] Pace L., Catalano L., Del Vecchio S., De Renzo A., Ponti R., Salvatore B. et al.: “Washout of [99m Tc] sestaMIBI in predicting response to chemotherapy in patients with multiple myeloma”. Q J. Nucl. Med. Mol. Imaging, 2005, 49, 281.

[40] Yokogami K., Kawano H., Moriyama T., Uehara H., Sameshima T., Oku T. et al.: “Application of SPET using technetium-99m sestamibi in brain tumours and comparison with expression of the MDR-1 gene: is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-sestamibi SPET?”. Eur. J. Nucl. Med., 1998, 25, 401.

[41] Kao C.H., Hsieh J.F., Tai S.C., Ho Y.J., Lee J.K.: “Quickly predicting chemotherapy response to paclitaxel-based therapy in non-small cell lung cancer by early technetium-99m methoxyisobutylisonitrile chest single-photon-emission computed tomography”. Clin. Cancer Res., 2000, 6, 820.

[42] Kapucu L.O., Akyuz C., Vural G., Oguz A., Atasever T., Buyukpamukcu M., Unlu M.: “Evaluation of therapy response in children with untreated malignant lymphomas using technetium-99m-sestamibi”. J. Nucl. Med., 1997, 38, 243.

[43] C ´ wikla J.B., Timorek A., Stelmachów J., Ruszczyn´ska M., Kupryjanczyk J., Kolasin´ska A.D., Królicki L.: “Prediction of response after cytotoxic chemotherapy In patients with gynecological malignancy using radioisotope 99Tc-sestamibi”. Eur. Radiol., 2000 (suppl. 1), 2, S:124.

[44] Goldstein L.J.: “MDR1 gene expression in solid tumours”. Eur. J. Cancer, 1996, 32, 1039.

[45] Bourhis J., Goldstein L.J., Riou G., Pastan I., Gottesman M.M., Benard J.: “Expression of a human multidrug resistence gene in ovarian carcinomas”. Cancer Res., 1989, 49, 5062.

[46] Marshall C., Eremin J., El-Sheemy M., Eremin O., Griffiths P.A.: “Monitoring the response of large (> 3 cm) and locally advanced (T3-4,N 0-2) breast cancer to neoadjuvant chemotherapy using 99mTc-sestamibi uptake”. Nucl. Med. Commun., 2005, 26, 9.

[47] Dunnwald L.K., Gralow J.R., Eblis G.R., Livingston R.B., Linden H.M., Lawton T.J. et al.: “Residual tumor uptake of [99mTc]-sestamibi after neoadjuvant chemotherapy for locally advanced breast carcinoma predicts survival”. Cancer, 2005, 103, 680.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top