Article Data

  • Views 1309
  • Dowloads 112

Original Research

Open Access

Clinical significance of serum growth-regulated oncogene α (GROα) in patients with gynecological cancer

  • R. Nishikawa1
  • 'N. Suzumori1,*,
  • T. Nishiyama2
  • H. Nishikawa1
  • A. Arakawa1
  • M. Sugiura-Ogasawara1

1Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medicine, Nagoya, Japan

2Clinical Research Management Center, Nagoya City University, Nagoya, Japan

DOI: 10.12892/ejgo201202138 Vol.33,Issue 2,March 2012 pp.138-141

Published: 10 March 2012

*Corresponding Author(s): 'N. Suzumori E-mail: og.n.suz@med.nagoya-cu.ac.jp

Abstract

Purpose of investigation: To assess the clinical relevance of serum growth-regulated oncogene alpha (GRO alpha) levels in gynecological cancer, we investigated its concentration in distinguishing patients with cervical cancer, endometrial cancer, ovarian cancer, benign ovarian tumor and control. Methods: Preoperative serum GRO alpha levels were measured in women with cervical cancer (n = 46), endometrial cancer (n = 39), ovarian cancer (n = 124), benign ovarian tumors (n = 52), and normal controls (n = 38) using an enzyme-linked immunosorbent assay. Results: Statistical analyses showed that the serum GRO alpha concentration was significantly elevated in the cervical cancer, endometrial cancer and ovarian cancer patients compared with controls. Using GRO alpha levels, the receiver operating characteristic (ROC) of cervical cancer (AUG approximate to 0.775), endometrial cancer (AUG approximate to 0.799), ovarian cancer (AUC approximate to 0.749) and benign ovarian tumors (AUC approximate to 0.568) vs controls were identified. Conclusion: Our findings suggest that serum GRO alpha measurement as a molecular marker might contribute to detection and diagnosis of gynecological cancer.

Keywords

Cancer; GRO; ELISA; Ovarian tumor; Serum; ROC

Cite and Share

R. Nishikawa,'N. Suzumori,T. Nishiyama,H. Nishikawa,A. Arakawa,M. Sugiura-Ogasawara. Clinical significance of serum growth-regulated oncogene α (GROα) in patients with gynecological cancer. European Journal of Gynaecological Oncology. 2012. 33(2);138-141.

References

[1] Strieter R.M., Belperio J.A., Phillips R.J., Keane M.P.: “CXC chemokines in angiogenesis of cancer”. Semin. Cancer Biol., 2004, 14, 195.

[2] Kulbe H., Levinson N.R., Balkwill F., Wilson J.L.: “The chemokine network in cancer-much more than directing cell movement”. Int. J. Dev. Biol., 2004, 48, 489.

[3] Anisowicz A., Bardwell L., Sager R.: “Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells”. Proc. Natl. Acad. Sci USA, 1987, 84, 7188.

[4] Richmond A., Thomas H.G.: “Melanoma growth: isolation from human melanoma tumors and characterization of tissue distribution”. J. Cell. Biochem., 1988, 36, 185.

[5] Shattuck R.L., Wood L.D., Jaffe G.J., Richmond A.: “MGSA/GRO transcription is differentially regulated in normal retinal pigment epithelial and melanoma cells”. Mol. Cell. Biol., 1994, 14, 791.

[6] Dong G., Loukinova E., Chen Z., Gangi L., Chanturita T.I., Liu E.T., Van Waes G.: “Molecular profiling of transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis, and the NFB signal pathway”. Cancer Res., 2001, 61, 4797.

[7] Loukinova E., Dong G., Enamorado-Ayala I., Thomas G.R., Chen Z., Schreiber H., Van Waes C.: “Growth regulated oncogeneexpression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC receptor-2 dependent mechanism”. Oncogene, 2000, 19, 3477.

[8] Li A., Varney M.L., Singh R.K.: “Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype”. Clin. Exp. Metastasis, 2004, 21, 571.

[9] Eck M., Schmausser B., Scheller K., Brandlein S., Muller-Hermelink H.K.: “Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma”. Clin. Exp. Immunol., 2003, 134, 508.

[10] Shintani S., Ishikawa T., Nonaka T., Li C., Nakashiro K., Wong D.T., Hamakawa H.: “Growth-regulated oncogene-1 expression is associated with angiogenesis and lymph node metastasis in human oral cancer”. Oncology, 2004, 66, 316.

[11] Lee Z., Swaby R.F., Liang Y., Yu S., Liu S., Lu K.H. et al.: “Lysophosphatidic acid is a major regulator of growth-regulated oncogene alpha in ovarian cancer”. Cancer Res., 2006, 66, 2740.

[12] Lambeck A.J.A., Crijns A.P.G., Leffers N., Sluiter W.J., ten Hoor K.A., Braid M. et al.: “Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin 7”. Clin. Cancer Res., 2007, 13, 2385.

[13] Wilson J., Balkwill F.: “The role of cytokines in the epithelial cancer microenvironment”. Semin. Cancer Biol., 2002, 12, 113.

[14] Balkwill F., Mantovani A.: “Inflammation and cancer: back to Virchow?”. Lancet, 2001, 357, 539.

[15] Vicari A.P., Caux C.: “Chemokines in cancer”. Cytokine Growth Factor Rev., 2002, 13, 143.

[16] Yang G., Rosen D.G., Zhang Z., Bast Jr R.C., Mills G.B., Colacino J.A. et al.: “The chomokine growth-regulated oncogne 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis”. Proc. Natl. Acad. Sci USA, 2006, 103, 16472.

[17] Coffman R.L., von der Weid T.: “Multiple pathways for the initiation of T helper 2 (Th2) responses”. J. Exp. Med., 1997, 185, 373.

[18] Niwa Y.: “Elevated RANTES levels in plasma or skin and decreased plasma IL-10 levels in subsets of patients with severe atopic dermatitis”. Arch. Dermatol., 2000, 136, 125.

[19] R Development Core Team. R: “A language and environment for statistical computing”. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. 2009.

[20] DeLong E.R., DeLong D.M., D.L. Clarke-Pearson: “Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach”. Biometrics, 1988, 44, 837.

[21] Gorelik E., Landsittel D.P., Marrangoni A.M., Modugno F., Velikokhatnaya L., Winans M.T. et al.: “Multiplexed immunobeadbased cytokine profiling for early detection of ovarian cancer”. Cancer Epidemiol Biomarkers Prev., 2005, 14, 981.

[22] Cooper B.C., Ritchie J.M., Broghammer C.L.W., Coffin J., Sorosky J.I., Buller R.E. et al.: “Preoperative serum vascular endothelial growth factor levels: significance in ovarian cancer”. Clin. Cancer Res., 2002, 8, 3193.

[23] Bast R.C. Jr, Xu F.J., Yu Y.H., Barnhill S., Zhang Z., Mills G.B.: “CA125: the past and the future”. Int. J. Biol. Markers, 1998, 13, 179.

[24] Nosov V., Su F., Amneus M., Birrer M., Robins T., Kotlerman J. et al.: “Validation of serum biomarker for detection of early-stage ovarian cancer”. Am. J. Obstet. Gynecol., 2009, 200, 639.e1.

[25] Moore R.G., Brown A.K., Miller M.C., Badgwell D., Lu Z., Allard W.J. et al.: “Utility of a novel serum biomarker HE4 in patients with endometrioid adenocarcinoma of the uterus”. Gynecol. Oncol., 2008, 110, 196.

[26] Ahuja S.K., Phillip M.M.: “The CXC chemokines growth-regulated oncogene (GRO)α, GROβ, GROγ, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor”. J. Biol. Chem., 1996, 271, 20545.

[27] Yang G., Rosen D.G., Liu G., Yang F., Guo X., Xiao X. et al.: “CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis”. Clin. Caner Res., 2010, 16, 3875.

Submission Turnaround Time

Top