Article Data

  • Views 498
  • Dowloads 153

Original Research

Open Access

Radiosensitization of cervical cancer cells with epigenetic drugs hydralazine and valproate

  • E. Mani1,
  • L.A. Medina2
  • K. Isaac-Olivé3
  • A. Dueñas-González1,*,

1Unit of Biomedical Research in Cancer. Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City

2Unit of Biomedical Research in Cancer. Instituto de Fisica, UNAM/Instituto Nacional de Cancerologia, Mexico City

3School of Medicine, Universidad Autónoma del Estado de México, Mexico City (Mexico)

DOI: 10.12892/ejgo23962014 Vol.35,Issue 2,March 2014 pp.140-142

Published: 10 March 2014

*Corresponding Author(s): A. Dueñas-González E-mail: alfonso_duenasg@yahoo.com

Abstract

Purpose: To evaluate the radiosensitizing effects of the DNA methylation inhibitor hydralazine in combination with valproic acid, a histone deacetylase inhibitor in cervical cancer cells. Materials and Methods: Cell viability assays were performed in the SiHa cervical cancer cell line treated with hydralazine and valproic acid for five days with and without cisplatin. Cell irradiation was performed using teletherapy (1.25 MV). Results: Neither hydralazine, valproic acid or cisplatin as single agents increased the cytotoxicity from radiation, however, the combination of hydralazine with valproic acid at ten µM and one mM, respectively, did induce radiosensitization (p = 0.046). Interestingly, this effect was further increased with the triple combination of hydralazine, valproic acid, and cisplatin (p = 0.041), where cell viability decreased more than 50% as compared to radiation alone. Conclusions: The present results demonstrate that epigenetic drugs increase the efficacy of cisplatin chemoradiation in cervical cancer cells.


Keywords

Cervical cancer cells; Radiosensitization; Epigenetic drugs; Hydralazine; Valproate.

Cite and Share

E. Mani,L.A. Medina,K. Isaac-Olivé,A. Dueñas-González. Radiosensitization of cervical cancer cells with epigenetic drugs hydralazine and valproate. European Journal of Gynaecological Oncology. 2014. 35(2);140-142.

References

[1] Jemal A., Bray F., Center M.M., Center M.M., Ferlay J., Ward E. et al.: “Global cancer statistics”. C.A. Cancer J. Clin., 2011, 61, 69.

[2] Trimble E.L., Gius D., Harlan L.C.: “Impact of NCI Clinical Announcement upon use of chemoradiation for women with cervical can-cer”. J. Clin. Oncol., 2007, 25, 5537.

[3] Dueñas-Gonzalez A., Cetina L., Coronel J., Cervantes-Madrid D.: “Emerging drugs for cervical cancer”. Expert Opin Emerg Drugs, 2012, 17, 203.

[4] Dueñas-Gonzalez A., Zarba J.J., Patel F. Alcedo J.C., Beslija S., Casanova L., et al.: “Phase III, open-label, randomized study comparing concurrent gemcitabine plus cisplatin and radiation followed by adjuvant gemcitabine and cisplatin versus concurrent cisplatin and radiation in patients with Stage IIB to IVA carcinoma of the cervix”. J. Clin. Oncol., 2011, 29, 1678.

[5] Dueñas-González A., Lizano M., Candelaria M., Cetina L., Cervera E.: “Epigenetics of cervical cancer. An overview and therapeutic perspectives”. Mol. Cancer, 2005, 4, 38.

[6] De Schutter H., Kimpe M., Isebaert S., Nuyts S.: “A systematic assessment of radiation dose enhancement by 5-Aza-2’-deoxycytidine and histone deacetylase inhibitors in head-and-neck squamous cell carcinoma”. Int. J. Radiat. Oncol. Biol. Phys., 2009, 73, 904.

[7] Gonzalez-Fierro A., Vasquez-Bahena D., Taja-Chayeb L., Vidal S., Trejo-Becerril C., Pérez-Cardenas E., et al.: “Pharmacokinetics of hydralazine, an antihypertensive and DNA-demethylating agent, using controlled-release formulations designed for use in dosing schedules based on the acetylator phenotype”. Int. J. Clin. Pharmacol. Ther., 2011, 49, 519.

[8] Chavez-Blanco A., Perez-Plasencia C., Perez-Cardenas E., Carrasco-Legleu C., Rangel-Lopez E., Segura-Pacheco B., et al.: “Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines”. Cancer Cell. Int., 2006, 6, 2.

[9] De la Cruz-Hernandez E., Perez-Plasencia C., Perez-Cardenas E., Weiss-Steider B. et al.: “Transcriptional changes induced by epigenetic therapy with hydralazine and magnesium valproate in cervical carcinoma”. Oncol. Rep., 2011, 25, 399.

[10] Mora-Garcia M. de L., Duenas-Gonzalez A., Hernandez-Montes J. et al.: “Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid”. J. Transl. Med., 2006, 4, 55.

[11] De Schutter H., Nuyts S.: “Radiosensitizing potential of epigenetic anticancer drugs”. Antic. Agents Med. Chem., 2009, 9, 99.

[12] Bar-Sela G., Jacobs K.M., Gius D.: “Histone deacetylase inhibitor and demethylating agent chromatin compaction and the radiation response by cancer cells”. Cancer J., 2007, 13, 65.

[13] Candelaria M., Cetina L., Pérez-Cárdenas E., de la Cruz-Hernández E., González-Fierro A., Trejo-Becerril C., et al.: “Epigenetic therapy and cisplatin chemoradiation in FIGO stage IIIB cervical cancer”. Eur. J. Gynaecol. Oncol., 2010, 31, 386.

[14] Shoji M., Ninomiya I., Makino I., Kinoshita J., Nakamura K., Oyama K., et al.: “Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in esophageal squamous cell carcinoma”. Int. J. Oncol., 2012, 40, 2140.

[15] Harikrishnan K.N., Karagiannis T.C., Chow M.Z., El-Osta A.: “Effect of valproic acid on radiation-induced DNA damage in euchromatic and heterochromatic compartments”. Cell. Cycle, 2008, 7, 468.

[16] Camphausen K., Cerna D., Scott T., Sproull M, Burgan W.E., Cerra M. A., et al.: “Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid”. Int. J. Cancer, 2005, 114, 380.

[17] Chen X., Wong J.Y., Wong P., Radany E.H.: “Low-dose valproic acid enhances radiosensitivity of prostate cancer through acetylated p53-dependent modulation of mitochondrial membrane potential and apoptosis”. Mol. Cancer Res., 2011, 4, 448.

[18] Chen X., Wong P., Radany E., Wong J.Y.: “HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells”. Cancer Biother Radiopharm., 2009, 24, 689.

[19] Fortson W.S., Kayarthodi S., Fujimura Y. et al.: “Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells”. Int. J. Oncol., 2011, 39, 111.

[20] Dote H., Cerna D., Burgan W.E., Carter D.J., Cerra M.A., Hollingshead M. G., et al.: “Enhancement of in vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine”. Clin. Can-cer Res., 2005, 11, 4571.

[21] Cho H.J., Kim S.Y., Kim K.H., Kang W.K., Kim J.I. et al.: “The combination effect of sodium butyrate and 5-Aza-2’-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines”. World J. Surg. Oncol., 2009, 7, 49.

[22] Candelaria M., Gallardo-Rincón D., Arce C., Cetina L., Aguilar-Ponce J.L., Arrieta O., et al.: “A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors”. Ann. Oncol., 2007, 18, 1529.

[23] Arce C., Pérez-Plasencia C., González-Fierro A., de la Cruz-Hernández E., Revilla-Vázquez A., Chávez-Blanco A., et al.: “A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer”. PLoS One, 2006, 20, 1.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top