Article Data

  • Views 520
  • Dowloads 112

Original Research

Open Access

Cervical squamous cancer mRNA profiles reveal the key genes of metastasis and invasion

  • Yuan Cheng1
  • Ding Ma1
  • Youyi Zhang2
  • Zijian Li2,†
  • Li Geng1,†,*,

1Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China

2Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovasicular Receptors Research, Beijing, China

DOI: 10.12892/ejgo2683.2015 Vol.36,Issue 3,June 2015 pp.309-317

Published: 10 June 2015

*Corresponding Author(s): Li Geng E-mail: gengli1957@bjmu.edu.cn

† These authors contributed equally.

Abstract

Purpose of investigation: To investigate mRNA expression profiles associated with cervical squamous carcinoma progression and to identify key genes involved in invasion and metastasis of cervical squamous cancer. Materials and Methods: The authors extracted the mRNA expression profile of eight normal cervical tissues by human whole genome microarray. The main functions of differentially expressed genes were identified by gene ontology (GO) analysis. Gene-networks were established based on bioinformatic approaches. Microarray data of the expressions level of key genes verified by qRT-PCR. Results: The authors identified 2036 differentially expressed genes between two groups including 1,282 down-regulated genes and 754 up-regulated genes (p < 0.05, FDR< 0.05). Gene-network revealed that PDGFRA, CAV1, and GJA-1 were critical for cervical cancer invasion and metastasis. Conclusions: PDGFRA, CAV1, and GJA-1 were revealed as key node genes for cervical cancer invasion and metastasis. The results may provide new evidences and ideas for early diagnosis and prognosis assessment of cervical cancer.

Keywords

Cervical cancer; Gene expression profile; Microarray; mRNA.

Cite and Share

Yuan Cheng,Ding Ma,Youyi Zhang,Zijian Li,Li Geng. Cervical squamous cancer mRNA profiles reveal the key genes of metastasis and invasion. European Journal of Gynaecological Oncology. 2015. 36(3);309-317.

References

[1] Arbyn M., Castellsagué X., de Sanjosé S., Bruni L., Saraiya M., Bray F., et al.: “Worldwide burden of cervical cancer in 2008”. Ann. Oncol., 2011, 22, 2675.

[2] Soerjomataram I., Lortet-Tieulent J., Parkin D.M., Ferlay J., Mathers C., Forman D., et al.: “Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions”. Lancet., 2012, 380, 1840.

[3] Zhang J., Zheng A., Gong J.L., Zhang Y.Y.: “Study on the correlation between midkine expression and cervical cancer”. Chin. J. Obstet. Gynecol. Pediatr., 2008, 4, 316.

[4] Liu Y.J., Qiao Y.H., Guo R.X.: “Clinical analysis of 24 cases of cervical carcinoma in young women”. Chin. J. Pract Diagn. Treat., 2007, 21, 146.

[5] Kim Y.T., Zhao M.: “Aberrant cell cycle regulation in cervical carcinoma”. Yonsei. Med. J., 2005, 46, 597.

[6] Hudelist G., Czerwenka K., Singer C., Pischinger K., Kubista E., Manavi M.: “cDNA array analysis of cytobrush-collected normal and malignant cervical epithelial cells: a feasibility study”. Cancer. Genet. Cytogenet., 2005, 158, 35.

[7] Lilic V., Lilic G., Filipovic S., Milosevic J., Tasic M., Stojiljkovic M.: “Modern treatment of invasive carcinoma of the uterine cervix”. J. BUON., 2009, 14, 587.

[8] Rodriguez Villalba S., Diaz-Caneja Planell C., Cervera Grau J.M.: “Current opinion in cervix carcinoma”. Clin. Transl. Oncol., 2011, 13, 378.

[9] Chou R.H., Hsieh S.C., Yu Y.L., Huang M.H., Huang Y.C., Hsieh Y.H.: “Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway”. PLoS One, 2013, 8, e71983.

[10] Wang K., Gan L., Jeffery E., Gayle M., Gown A.M., Skelly M., et al.: “Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray”. Gene,1999, 229, 101.

[11] Sopov I., Sörensen T., Magbagbeolu M., Jansen L., Beer K., Kühne- Heid R., et al.: “Detection of cancer-related gene expression profiles in severe cervical neoplasia”. Int. J. Cancer., 2004, 112, 33.

[12] Chao A., Wang T.H., Lee Y.S., Hsueh S., Chao A.S., Chang T.C., et al.: “ Molecular characterization of adenocarcinoma and squamous carcinoma of the uterine cervix using microarray analysis of gene expression”. Int. J. Cancer., 2006, 119, 91.

[13] Lyng H., Brøvig R.S., Svendsrud D.H., Holm R., Kaalhus O., Knutstad K., et al.: “ Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer”. BMC Genomics., 2006, 7, 268.

[14] Kosary C.L.: “FIGO stage, histology, histologic grade, age and race as prognostic factors in determining survival for cancers of the female gynecological system: an analysis of 1973-87 SEER cases of cancers of the endometrium, cervix, ovary, vulva, and vagina”. Semin. Surg. Oncol.,1994, 10, 31.

[15] Gene Ontology Consortium: “The Gene Ontology (GO) project in 2006”. Nucleic. Acids. Res., 2006, 34, 322.

[16] Dupuy D., Bertin N., Hidalgo C.A, Venkatesan K., Tu D., Lee D., et al.: “ Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans”. Nat. Biotechnol., 2007, 25, 663.

[17] Yi M., Horton J.D., Cohen J.C., Hobbs H.H., Stephens R.M.: “WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data”. BMC Bioinformatics, 2006, 7, 30.

[18] Kanehisa M., Goto S., Kawashima S., Okuno Y., Hattori M.: “The KEGG resource for deciphering the genome”. Nucleic Acids Res., 2004, 32, 277.

[19] Wright J.D., Grigsby P.W., Brooks R., Powell M.A., Gibb R.K., Gao F., et al.: “ Utility of parame -trectomy for early stage cervical cancer treated with radical hysterectomy”. Cancer, 2007, 110, 1281.

[20] Yuan S.H., Liang X.F., Jia W.H., Huang J.L., Wei M., Deng L., et al.: “Molecular diagnosis of sentinel lymph node metastases in cervical cancer using squamous cell carcinoma antigen”. Clin. Cancer. Res., 2008, 14, 5571.

[21] Kim J.M., Kim H.J., Koo B.S., Rha K.S., Yoon Y.H.: “Expression of matrix metalloproteinase-12 is correlated with extracapsular spread of tumor from nodes with metastasis in head and neck squamous cell carcinoma”. Eur. Arch. Otorhinolaryngol., 2013, 270, 1137.

[22] Wong G.S., Lee J.S., Park Y.Y., Klein-Szanto A.J., Waldron T.J., Cukierman E., et al.: “Periostin cooperates with mutant p53 to mediate invasion through the induction of STAT1 signaling in the esophageal tumor microenvironment”. Oncogenesis, 2013, 2, e59.

[23] Chang K.P., Wu C.C., Fang K.H., Tsai C.Y., Chang Y.L., Liu S.C., et al.: “Serum levels of chemokine (C-X-C motif) ligand 9 (CXCL9) are associated with tumor progression and treatment outcome in patients with oral cavity squamous cell carcinoma”. Oral.Oncol., 2013, 49, 802.

[24] Imura J., Uchida Y., Nomoto K., Ichikawa K., Tomita S., Iijima T., et al.: “Laminin-5 is a biomarker of invasiveness in cervical adenocarcinoma”. Diagn. Pathol., 2012, 7, 105.

[25] Nalam R.L., Lin Y.N., Matzuk M.M.: “Testicular cell adhesion molecule 1 (TCAM1) is not essential for fertility”. Mol. Cell. Endocrinol., 2010, 315, 246.

[26] Sahai E.: “Mechanisms of cancer cell invasion”. Curr. Opin. Genet. Dev., 2005, 15, 87.

[27] Christine L., Robert A.,Weinberg A.: “A perspective on cancer cell metastasis”. Science., 2011, 331, 1559.

[28] Cavallaro U., Christofori G.: “Cell adhesion and signalling by cadherins and Ig-CAMs in cancer”. Nat. Rev. Cancer, 2004, 4, 118.

[29] Tolias K.F., Rameh L.E., Ishihara H., Shibasaki Y., Chen J., Prestwich G.D., et al.: “Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate”. J. Biol. Chem., 1998, 273, 18040.

[30] El-Sibai M., Nalbant P., Pang H., Flinn R.J., Sarmiento C., Macaluso F., et al.: “Cdc42 is required for EGF-stimulated protrusion and motility in MTLn3 carcinoma cells”. J. Cell. Sci., 2007, 120, 3465.

[31] Takabayashi T., Takahashi N., Okamoto M., Yagi H., Sato M., Fujieda S.: “Lipopolysaccharides increase the amount of CXCR4, and modulate the morphology and invasive activity of oral cancer cells in a CXCL12-dependent manner”. Oral. Oncol., 2009, 45, 968.

[32] Jamora C., Fuchs E.: “Intercellular adhesion, signalling and the cytoskeleton”. Nat. Cell. Biol., 2002, 4, 101.

[33] Hou X., Kumar A., Lee C., Wang B., Arjunan P., Dong L., et al.: “PDGF-CC blockade inhibits pathological angiogenesis by acting on multiple cellular and molecular targets”. Proc. Natl. Acad. Sci. USA, 2010, 107, 12216.

[34] Tallquist M., Kazlauskas A.: “PDGF signaling in cells and mice”. Cytokine Growth Factor Rev., 2004, 15, 205.

[35] Birukov K.G.: “Cyclic stretch, reactive oxygen species, and vascular remodeling”. Antioxid. Redox. Signal., 2009, 11, 1651.

[36] Batchu S.N., Korshunov V.A.: “Novel tyrosine kinase signaling pathways: Implications in vascular remodeling”. Curr. Opin. Nephrol. Hypertens., 2012, 21, 122.

[37] Taja-Chayeb L., Chavez-Blanco A., Martínez-Tlahuel J., González- Fierro A., Candelaria M., Chanona-Vilchis J., et al.: “ Expression of platelet derived growth factor family members and the potential role of imatinib mesylate for cervical cancer”. Cancer Cell Int., 2006, 6, 22.

[38] Goetz J.G., Lajoie P., Wiseman S.M., Nabi I.R.: “Caveolin-1 in tumor progression: the good, the bad and the ugly”. Cancer. Metastasis. Rev., 2008, 27, 715.

[39] Burgermeister E., Liscovitch M., Röcken C., Schmid R.M., Ebert M.P.: “Caveats of caveolin- 1 in cancer progression”. CancerLett., 2008, 268, 187.

[40] Miotti S., Tomassetti A., Facetti I., Sanna E., Berno V., Canevari S.: “Simultaneous expression of caveolin-1 and E-cadherin in ovarian carcinoma cells stabilizes adherens junctions through inhibition of src-related kinases”. Am. J. Pathol., 2005, 167, 1411.

[41] Song Y., Xue L., Du S., Sun M., Hu J., Hao L., et al.: “Caveolin-1 knockdown is associated with the metastasis and proliferation of human lung cancer cell line NCI-H460”. Biomed. Pharmacother., 2012, 66, 439.

[42] Li X., Zhang X., Liu X., Tan Z., Yang C., Ding X., et al.: “Caudatin induces cell apoptosis in gastric cancer cells through modulation of Wnt/β-cateninsignaling”. Oncol. Rep., 2013, 30, 677.

[43] Suh Y., Yoon C.H., Kim R.K., Lim E.J., Oh Y.S., Hwang S.G., et al.: “Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells”. Oncogene, 2013, 32, 4873.

[44] Williams T.M., Medina F., Badano I., Hazan R.B., Hutchinson J., Muller W.J., et al.: “Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion”. J. Biol.Chem., 2004, 279, 51630.

[45] Tang B., Peng Z.H., Yu P.W., Yu G., Qian F., Zeng D.Z., et al.: “Aberrant Expression of Cx43 Is Associated with the Peritoneal Metastasis of Gastric Cancer and Cx43- Mediated Gap Junction Enhances Gastric Cancer Cell Diapedesis from Peritoneal Mesothelium”. PLoS One, 2013, 8, e74527. doi: 10.1371/journal.pone.0074527.

[46] Wang Z.S., Wu L.Q., Yi X., Geng C., Li Y.J, Yao R.Y.: “Connexin- 43 can delay early recurrence and metastasis in patients with hepatitis B-related hepatocellular carcinoma and low serum alphafetoprotein after radical hepatectomy”. BMC Cancer, 2013, 13, 306.

[47] Zucker S.N., Bancroft T.A., Place D.E., Des Soye B., Bagati A., Berezney R.: “A dominant negative Cx43 mutant differentially affects tumorigenic and invasive properties in human metastatic melanoma cells”. J. Cell. Physiol., 2013, 228, 853.

[48] Crespin S., Bechberger J., Mesnil M., Naus C.C., Sin W.C.: “The Carboxy-Terminal Tail of Connexin43 Gap Junction Protein Is Sufficient to Mediate Cytoskeleton Changes in Human Glioma Cells”. J. Cell. Biochem., 2010, 110, 589.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top