Article Data

  • Views 416
  • Dowloads 102

Original Research

Open Access

Prognostic value of INPP4B protein immunohistochemistry in ovarian cancer

  • L. Salmena1,2,3
  • P. Shaw4
  • I. Fan5
  • J.R. McLaughlin5
  • B. Rosen6
  • H. Risch7
  • C. Mitchell8
  • P. Sun3
  • S.A. Narod3,9
  • J. Kotsopoulos3,9,*,

1Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada

2Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada

3Women’s College Research Institute, Women’s College Hospital, Toronto, ON, Canada

4Department of Pathology, University Health Network, Toronto, ON, Canada

5Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, ON, Canada

6Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada

7Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA

8Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia

9Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada

DOI: 10.12892/ejgo2741.2015 Vol.36,Issue 3,June 2015 pp.260-267

Published: 10 June 2015

*Corresponding Author(s): J. Kotsopoulos E-mail: joanne.kotsopoulos@wchospital.ca

Abstract

Purpose of investigation: Ovarian cancer is associated with poor prognosis and altered protein expression patterns may be useful for identifying patients likely to have poor disease outcomes. The impact of altered INPP4B protein expression on prognosis is unclear. The aim of this study was to evaluate the implication of INPP4B expression changes in a large series of ovarian cancer tissue samples. Materials and Methods: Tissue microarrays were constructed from 599 epithelial ovarian tumors and stained with antibodies for INPP4B, p53, and PTEN. Proportional hazard models were used to estimate survival hazard ratios (HRs) associated with altered protein expression. Results: Seventy-nine percent of the ovarian cancers demonstrated loss of INPP4B, whereas 53% showed aberrant p53 expression (i.e., complete loss of p53 or over-expression of p53) and 8% showed loss of PTEN. INPP4B was frequently lost in serous and endometrioid cancer subtypes, aberrant p53 expression was most common among serous subtype, and loss of PTEN was most common among endometrioid tumors (p for all three proteins across histologic subtypes ≤0.0001). INPP4B loss or aberrant p53 expression were both associated with increased mortality (HR = 1.84; 95% CI 1.27 - 2.68 and HR = 3.10; 95% CI 2.33 - 4.11, respectively); however, in multivariate models, only the relationship with p53 achieved statistical significance (HR = 1.20; 95% CI 0.82 - 1.76 for INPP4B and HR = 1.73; 95% CI 1.28 - 2.34 for p53). Conclusion: The INPP4B protein is frequently lost in serous and endometrioid subtypes of ovarian cancer. A possible prognostic role of INPP4B for endometrioid ovarian tumors requires further evaluation.

Keywords

Ovarian cancer; Prognosis; INPP4B; PTEN; p53; Survival.

Cite and Share

L. Salmena,P. Shaw,I. Fan,J.R. McLaughlin,B. Rosen,H. Risch,C. Mitchell,P. Sun,S.A. Narod,J. Kotsopoulos. Prognostic value of INPP4B protein immunohistochemistry in ovarian cancer. European Journal of Gynaecological Oncology. 2015. 36(3);260-267.

References

[1] Cannistra S.A.: “Cancer of the ovary”. N. Engl. J. Med., 2004, 351, 2519.

[2] Jayson G.C., Kohn E.C., Kitchener H.C., Ledermann J.A.: “Ovarian cancer”. Lancet, 2014, pii: S0140-6736(13)62146-7. doi: 10.1016/ S0140-6736(13)62146-7. [Epub ahead of print]

[3] Agarwal R., Kaye S.B.: “Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature reviews”. Cancer, 2003, 3, 502.

[4] Cantley L.C.: “The phosphoinositide 3-kinase pathway”. Science, 2002, 296, 1655.

[5] Cancer Genome Atlas Research Network: “Integrated genomic analyses of ovarian carcinoma”. Nature, 2011, 474, 609. doi: 10.1038/nature10166.

[6] Kanchi K.L., Johnson K.J., Lu C., McLellan M.D., Leiserson M.D., Wendl M.C., et al.: “Integrated analysis of germline and somatic variants in ovarian cancer”. Nature Commun., 2014, 5, 3156. doi: 10.1038/ncomms4156.

[7] Zhang S., Royer R., Li S., McLaughlin J.R., Rosen B., Risch H.A., et al.: “Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer”. Gynecol. Oncol., 2011, 121, 353.

[8] Fedele C.G., Ooms L.M., Ho M., Vieusseux J., O’Toole S.A., Millar E.K., et al.: “Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers”. Proc. Natl. Acad. Sci. U S A, 2010, 107, 22231. doi: 10.1073/pnas. 1015245107. Epub 2010 Dec 2.

[9] Norris F.A., Auethavekiat V., Majerus P.W.: “The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase”. J. Biol. Chem., 1995, 270, 16128.

[10] Johannsdottir H.K., Johannesdottir G., Agnarsson B.A., Eerola H., Arason A., Johannsson O.T., et al.: “Deletions on chromosome 4 in sporadic and BRCA mutated tumors and association with pathological variables”. Anticancer Res., 2004, 24, 2681.

[11] Westbrook T.F., Martin E.S., Schlabach M.R., Leng Y., Liang A.C., Feng B., et al.: “A genetic screen for candidate tumor suppressors identifies REST”. Cell, 2005, 121, 837.

[12] Agoulnik I.U., Hodgson M.C., Bowden W.A., Ittmann M.M.: “INPP4B: the new kid on the PI3K block”. Oncotarget, 2011, 2, 321.

[13] Bergamaschi A., Kim Y.H., Wang P., Sorlie T., Hernandez-Boussard T., Lonning P.E., et al.: “Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer”. Genes Chromosomes Cancer, 2006, 45, 1033.

[14] Gewinner C., Wang Z.C., Richardson A., Teruya-Feldstein J., Etemadmoghadam D., Bowtell D., et al.: “Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling”. Cancer Cell, 2009, 16, 115.

[15] Michalovitz D., Halevy O., Oren M.: “p53 mutations: gains or losses?” J. Cell. Biochem., 1991, 45, 22.

[16] Singh B., Reddy P.G., Goberdhan A., Walsh C., Dao S., Ngai I., et al.: “p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas”. Genes Dev., 2002, 16, 984.

[17] de Graeff P., Crijns A.P., de Jong S., Boezen M., Post W.J., de Vries E.G., et al.: “Modest effect of p53, EGFR and HER-2/neu on prognosis in epithelial ovarian cancer: a meta-analysis”. Br. J. Cancer, 2009, 101, 149.

[18] Landen C.N. Jr., Birrer M.J., Sood A.K.: “Early events in the pathogenesis of epithelial ovarian cancer”. J. Clin. Oncol., 2008, 26, 995.

[19] Kmet L.M., Cook L.S., Magliocco A.M.: “A review of p53 expression and mutation in human benign, low malignant potential, and invasive epithelial ovarian tumors”. Cancer, 2003, 97, 389.

[20] Ahmed A.A., Etemadmoghadam D., Temple J., Lynch A.G., Riad M., Sharma R., et al.: “Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary”. J. Pathol., 2010, 221, 49.

[21] Kuhn E., Kurman R.J., Vang R., Sehdev A.S., Han G., Soslow R., et al.: “TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma—evidence supporting the clonal relationship of the two lesions”. J. Pathol., 2012, 226, 421.

[22] Salmena L., Carracedo A., Pandolfi P.P.: “Tenets of PTEN tumor suppression”. Cell, 2008, 133, 403.

[23] Ali I.U., Schriml L.M., Dean M.: “Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity”. J. Natl. Cancer Inst., 1999, 91, 1922.

[24] Obata K., Morland S.J., Watson R.H., Hitchcock A., Chenevix- Trench G., Thomas E.J., Campbell I.G.: “Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors”. Cancer Res., 1998, 58, 2095.

[25] Jarboe E.A., Folkins A.K., Drapkin R., Ince T.A., Agoston E.S., Crum C.P.: “Tubal and ovarian pathways to pelvic epithelial cancer: a pathological perspective”. Histopathology, 2008, 53, 127.

[26] Djordjevic B., Hennessy B.T., Li J., Barkoh B.A., Luthra R., Mills G.B., Broaddus R.R.: “Clinical assessment of PTEN loss in endometrial carcinoma: immunohistochemistry outperforms gene sequencing”. Mod. Pathol., 2012, 25, 699.

[27] Mutter G.L., Ince T.A., Baak J.P., Kust G.A., Zhou X.P., Eng C.: “Molecular identification of latent precancers in histologically normal endometrium”. Cancer Res., 2001, 61, 4311.

[28] Ali-Fehmi R., Khalifeh I., Bandyopadhyay S., Lawrence W.D., Silva E., Liao D., et al.: “Patterns of loss of heterozygosity at 10q23.3 and microsatellite instability in endometriosis, atypical endometriosis, and ovarian carcinoma arising in association with endometriosis”. Int. J. Gynecol. Pathol., 2006, 25, 223.

[29] Obata K., Hoshiai H.: “Common genetic changes between endometriosis and ovarian cancer”. Gynecol. Obstet. Invest., 2000, 50, 39.

[30] Sato N., Tsunoda H., Nishida M., Morishita Y., Takimoto Y., Kubo T., Noguchi M.L: “Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary”. Cancer Res., 2000, 60, 7052.

[31] Saito M., Okamoto A., Kohno T., Takakura S., Shinozaki H., Isonishi S., et al.: “Allelic imbalance and mutations of the PTEN gene in ovarian cancer”. Int. J. Cancer, 2000, 85, 160.

[32] Davidson B., Hadar R., Schlossberg A., Sternlicht T., Slipicevic A., Skrede M., et al.: “Expression and clinical role of DJ-1, a negative regulator of PTEN, in ovarian carcinoma”. Hum. Pathol., 2008, 39, 87.

[33] Wang Y., Kristensen G.B., Helland A., Nesland J.M., Borresen-Dale A.L., Holm R.: “Protein expression and prognostic value of genes in the erb-b signaling pathway in advanced ovarian carcinomas”. Am. J. Clin. Pathol., 2005, 124, 392.

[34] Abe A., Minaguchi T., Ochi H., Onuki M., Okada S., Matsumoto K., et al.: “PIK3CA overexpression is a possible prognostic factor for favorable survival in ovarian clear cell carcinoma”. Hum. Pathol., 2013, 44, 199.

[35] Skirnisdottir I., Seidal T.: “Prognostic impact of concomitant p53 and PTEN on outcome in early stage (FIGO I-II) epithelial ovarian cancer”. Int. J. Gynecol. Cancer, 2011, 21, 1024.

[36] Schondorf T., Gohring U.J., Roth G., Middel I., Becker M., Moser N.V., et al.: “Time to progression is dependent on the expression of the tumour suppressor PTEN in ovarian cancer patients”. Eur. J. Clin. Invest., 2003, 33, 256.

[37] Lee Y.K., Park N.H.: “Prognostic value and clinicopathological significance of p53 and PTEN in epithelial ovarian cancers”. Gynecol. Oncol., 2009, 112, 475.

[38] de Graeff P., Crijns A.P., Ten Hoor K.A., Klip H.G., Hollema H., Oien K., et al.: “The ErbB signalling pathway: protein expression and prognostic value in epithelial ovarian cancer”. Br. J. Cancer, 2008, 99, 341.

[39] Kurose K., Zhou X.P., Araki T., Cannistra S.A., Maher E.R., Eng C.: “Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels, but not associated with p27 and cyclin D1 expression, in primary epithelial ovarian carcinomas”. Am. J. Pathol., 2001, 158, 2097.

[40] Risinger J.I., Hayes K., Maxwell G.L., Carney M.E., Dodge R.K., Barrett J.C., Berchuck A.: “PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics”. Clin. Cancer Res., 1998, 4, 3005.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top