Article Data

  • Views 500
  • Dowloads 140

Reviews

Open Access

The significance of the pluripotency and cancer stem cell-related marker NANOG in diagnosis and treatment of ovarian carcinoma

  • N. Kenda Šuster1
  • I. Virant-Klun2
  • S. Frković Grazio3
  • Š. Smrkolj1,*,

1Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia

2Reproductive Unit, Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia

3Unit of Gynecologic Pathology and Cytology, Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia

DOI: 10.12892/ejgo3121.2016 Vol.37,Issue 5,October 2016 pp.604-612

Published: 10 October 2016

*Corresponding Author(s): Š. Smrkolj E-mail: spela.smrkolj@mf.uni-lj.si

Abstract

Ovarian cancer is among the most common gynecologic cancers and unfortunately the most common cause of death from gynecologic malignancies. Due to few early symptoms and insufficient screening programs, an early diagnosis of ovarian cancer is very difficult and new biomarkers related to early ovarian carcinogenesis are needed. In the last years a growing scientific knowledge about cancer stem cells and their markers opened a new perspective on screening and early diagnosis of ovarian cancer. The transcription factor NANOG is not only a pluripotency and cancer stem cell-related marker, but also promotes cancer stem cell-like characteristics of tumor, tumor growth, dissemination, immune evasion, and resistance to conventional therapy. The recent data showed that small stem cells resembling very small embryonic-like stem cells are present in the ovarian surface epithelium of adult human ovaries. These cells expressed several genes related to primordial germ cells, germinal lineage, and pluripotency, including NANOG, therefore their involvement in the manifestation of ovarian cancer are not excluded. As majority of cancer cells within a tumor are non tumorigenic, the therapies targeting these cells cause tumor regression, but the survived cancer stem cells regenerate the tumor, so tumor relapse or reoccur. The eradication of cancer actually requires the elimination of cancer stem cells, therefore new strategies in treatment that specifically target cancer stem cells are urgently needed. Although the therapeutic efficacy of targeting NANOG as a cancer treatment method is still in experimental phase, the gene therapy with small interfering RNA or short hairpin RNA have already shown some promising therapeutic potential. The authors can conclude that NANOG represents a promising diagnostic marker and agent for target therapy of ovarian cancer.

Keywords

Ovarian cancer; Cancer stem cells; NANOG; Chemoresistance; Target therapy.

Cite and Share

N. Kenda Šuster,I. Virant-Klun,S. Frković Grazio,Š. Smrkolj. The significance of the pluripotency and cancer stem cell-related marker NANOG in diagnosis and treatment of ovarian carcinoma. European Journal of Gynaecological Oncology. 2016. 37(5);604-612.

References

[1] “Cancer in Slovenia 2010”. Ljubljana: Institute of Oncology Ljubljana,

Epidemiology and Cancer Registry, Cancer Registry of Republic

of Slovenia, 2013.

[2] Tavassoli F.A., Devilee P.: “Pathology and Genetics of Tumours of

the Breast and Female Genital Organs”. Lyon: IARC Press, 2003.

[3] Berek J.S., Novak E.: “Berek & Novak's gynecology”. 14

th

ed.

Philadelphia: Lippincott Williams & Wilkins, 2007, xxii.

[4] Romero I., Bast R.C. Jr.: “Minireview: human ovarian cancer: biology,

current management, and paths to personalizing therapy”. Endocrinology

, 2012, 153, 1593.

[5] Saad A.F., Hu W., Sood A.K.: “Microenvironment and pathogenesis

of epithelial ovarian cancer”. Horm. Cancer. 2010, 1, 277.

[6] Kurman R.J., Shih Ie M.: “The origin and pathogenesis of epithelial

ovarian cancer: a proposed unifying theory”. Am J Surg Pathol., 2010,

34, 433.

[7] Kurman R.J., Shih Ie M.: “Pathogenesis of ovarian cancer: lessons

from morphology and molecular biology and their clinical implications”.

Int. J. Gynecol. Pathol., 2008, 27, 151.

[8] Guth U., Huang D.J., Bauer G., Stieger M., Wight E., Singer G.:

“Metastatic patterns at autopsy in patients with ovarian carcinoma”.

Cancer, 2007, 110, 1272.

[9] Wicha M.S., Liu S., Dontu G.: “Cancer stem cells: an old idea--a

paradigm shift”. Cancer Res., 2006, 66, 1883.

[10] Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., Jones

D.L., et al.: “Cancer stem cells--perspectives on current status and

future directions: AACR Workshop on cancer stem cells”. Cancer

Res., 2006, 66, 9339..

[11] Reya T., Morrison S.J., Clarke M.F., Weissman I.L.: “Stem cells,

cancer, and cancer stem cells”. Nature, 2001, 414, 105.

[12] Molofsky A.V., Pardal R., Morrison S.J.: “Diverse mechanisms regulate

stem cell self-renewal”. Curr. Opin. Cell. Biol., 2004, 16, 700.

[13] Visvader J.E., Lindeman G.J.: “Cancer stem cells in solid tumours:

accumulating evidence and unresolved questions”. Nat. Rev. Cancer

, 2008, 8, 755.

[14] Miki J., Furusato B., Li H., Gu Y., Takahashi H., Egawa S., et al.:

“Identification of putative stem cell markers, CD133 and CXCR4, in

hTERT-immortalized primary nonmalignant and malignant tumorderived

human prostate epithelial cell lines and in prostate cancer

specimens”. Cancer Res., 2007, 67, 3153.

[15] Charafe-Jauffret E., Ginestier C., Iovino F., Wicinski J., Cervera N.,

Finetti P., et al.: “Breast cancer cell lines contain functional cancer

stem cells with metastatic capacity and a distinct molecular signature”.

Cancer Res., 2009, 69, 1302.

[16] Dontu G., Abdallah W.M., Foley J.M., Jackson K.W., Clarke M.F.,

Kawamura M.J., Wicha M.S.: “In vitro propagation and transcriptional

profiling of human mammary stem/progenitor cells”. Genes

Dev., 2003, 17, 1253.

[17] Widschwendter M., Fiegl H., Egle D., Mueller-Holzner E., Spizzo

G., Marth C., et al.: “Epigenetic stem cell signature in cancer”. Nat.

Genet., 2007, 39, 157

[18] Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke

M.F.: “Prospective identification of tumorigenic breast cancer cells”.

Proc. Natl. Acad. Sci. U S A, 2003, 100, 3983.

[19] Fillmore C.M., Kuperwasser C.: “Human breast cancer cell lines

contain stem-like cells that self-renew, give rise to phenotypically

diverse progeny and survive chemotherapy”. Breast Cancer Res.,

2008, 10, R25.

[20] Ibrahim E.E., Babaei-Jadidi R., Saadeddin A., Spencer-Dene B.,

Hossaini S., Abuzinadah M., et al.: “Embryonic NANOG activity

defines colorectal cancer stem cells and modulates through AP1- and

TCF-dependent mechanisms”. Stem Cells, 2012, 30, 2076

[21] Hill R.P.: “Identifying cancer stem cells in solid tumors: case not

proven”. Cancer Res., 2006, 66, 1891.

[22] Vogel G.: “Stem cells. 'Stemness' genes still elusive”. Science, 2003,

302, 371.

[23] McNiece I.: “The CD34+Thy1+ cell population: are they all stem

cells?” Exp. Hematol., 2000, 28, 1312.

[24] Virant-Klun I., Stimpfel M., Cvjeticanin B., Vrtacnik-Bokal E.,

Skutella T.: “Small SSEA-4-positive cells from human ovarian cell

cultures: related to embryonic stem cells and germinal lineage?” J.

Ovarian Res., 2013, 6, 24.

[25] Virant-Klun I., Skutella T., Hren M., Gruden K., Cvjeticanin B.,

Vogler A., Sinkovec J.: “Isolation of small SSEA-4-positive putative

stem cells from the ovarian surface epithelium of adult human

ovaries by two different methods”. Biomed. Res. Int., 2013, 2013,

690415

[26] Bonnet D., Dick J.E.: “Human acute myeloid leukemia is organized

as a hierarchy that originates from a primitive hematopoietic cell”.

Nat. Med., 1997, 3, 730.

[27] Eramo A., Lotti F., Sette G., Pilozzi E., Biffoni M., Di Virgilio A., et

al.: “Identification and expansion of the tumorigenic lung cancer

stem cell population”. Cell Death Differ., 2008, 15, 504.

[28] Jiang F., Qiu Q., Khanna A., Todd N.W., Deepak J., Xing L., et al.:

“Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker

in lung cancer”. Mol. Cancer Res., 2009, 7, 330.

[29] Lee T.K., Castilho A., Cheung V.C., Tang K.H., Ma S., Ng I.O.:

“CD24(+) liver tumor-initiating cells drive self-renewal and tumor

initiation through STAT3-mediated NANOG regulation”. Cell Stem

Cell, 2011, 9, 50.

[30] Bussolati B., Bruno S., Grange C., Ferrando U., Camussi G.: “Identification

of a tumor-initiating stem cell population in human renal

carcinomas”. FASEB J., 2008, 22, 3696.

[31] Virant-Klun I., Zech N., Rozman P., Vogler A., Cvjeticanin B., Klemenc

P., et al.: “Putative stem cells with an embryonic character isolated

from the ovarian surface epithelium of women with no

naturally present follicles and oocytes”. Differentiation, 2008, 76,

843.

[32] Virant-Klun I., Skutella T., Cvjeticanin B., Stimpfel M., Sinkovec

J.: “Serous papillary adenocarcinoma possibly related to the presence

of primitive oocyte-like cells in the adult ovarian surface epithelium:

a case report”. J. Ovarian Res., 2011, 4, 13.

[33] Pan Y., Jiao J., Zhou C., Cheng Q., Hu Y., Chen H.: “Nanog is highly

expressed in ovarian serous cystadenocarcinoma and correlated with

clinical stage and pathological grade”. Pathobiology, 2010, 77, 283.

[34] Lee M., Nam E.J., Kim S.W., Kim S., Kim J.H., Kim Y.T.: “Prognostic

impact of the cancer stem cell-related marker NANOG in

ovarian serous carcinoma”. Int. J. Gynecol. Cancer, 2012, 22, 1489

[35] Siu M.K., Wong E.S., Kong D.S., Chan H.Y., Jiang L., Wong O.G., et

al.: “Stem cell transcription factor NANOG controls cell migration and

invasion via dysregulation of E-cadherin and FoxJ1 and contributes to

adverse clinical outcome in ovarian cancers”. Oncogene, 2013, 32,

3500.

[36] Amsterdam A., Raanan C., Schreiber L., Freyhan O., Schechtman L.,

Givol D.: “Localization of the stem cell markers LGR5 and Nanog in

the normal and the cancerous human ovary and their inter-relationship”.

Acta Histochem., 2013, 115, 330

[37] Silva I.A., Bai S., McLean K., Yang K., Griffith K., Thomas D., et

al.: “Aldehyde dehydrogenase in combination with CD133 defines

angiogenic ovarian cancer stem cells that portend poor patient survival”.

Cancer Res., 2011, 71, 3991.

[38] Yin A.H., Miraglia S., Zanjani E.D., Almeida-Porada G., Ogawa M.,

Leary A.G., et al.: “AC133, a novel marker for human hematopoietic

stem and progenitor cells”. Blood, 1997, 90, 5002.

[39] Shackleton M., Vaillant F., Simpson K.J., Stingl J., Smyth G.K., Asselin-

Labat M.L., et al.: “Generation of a functional mammary gland

from a single stem cell”. Nature, 2006, 439, 84.

[40] Szotek P.P., Pieretti-Vanmarcke R., Masiakos P.T., Dinulescu D.M.,

Connolly D., Foster R., et al.: “Ovarian cancer side population defines

cells with stem cell-like characteristics and Mullerian Inhibiting

Substance responsiveness”. Proc. Natl. Acad. Sci. U S A, 2006,

103, 11154.

[41] Mitsui K., Tokuzawa Y., Itoh H., Segawa K., Murakami M., Takahashi

K., et al.: “The homeoprotein Nanog is required for maintenance

of pluripotency in mouse epiblast and ES cells”. Cell, 2003,

113, 631.

[42] Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S.,

Smith A.: “Functional expression cloning of Nanog, a pluripotency

sustaining factor in embryonic stem cells”. Cell, 2003, 113, 643.

[43] Hyslop L., Stojkovic M., Armstrong L., Walter T., Stojkovic P., Przyborski

S., et al.: “Downregulation of NANOG induces differentiation

of human embryonic stem cells to extraembryonic lineages”. Stem

Cells, 2005, 23, 1035.

[44] Wang J., Rao S., Chu J., Shen X., Levasseur D.N., Theunissen T.W.,

Orkin S.H.: “A protein interaction network for pluripotency of embryonic

stem cells”. Nature, 2006, 444, 364.

[45] Kashyap V., Rezende N.C., Scotland K.B., Shaffer S.M., Persson

J.L., Gudas L.J., Mongan N.P.: “Regulation of stem cell pluripotency

and differentiation involves a mutual regulatory circuit of the

NANOG, OCT4, and SOX2 pluripotency transcription factors with

polycomb repressive complexes and stem cell microRNAs”. Stem.

Cells Dev., 2009, 18, 1093.

[46] Wang J., Levasseur D.N., Orkin S.H.: “Requirement of Nanog

dimerization for stem cell self-renewal and pluripotency”. Proc. Natl.

Acad. Sci. U S A, 2008, 105, 6326.

[47] Pan G., Thomson J.A.: “Nanog and transcriptional networks in embryonic

stem cell pluripotency”. Cell Res., 2007, 17, 42.

[48] Booth H.A., Holland P.W.: “Eleven daughters of NANOG”. Genomics

, 2004, 84, 229.

[49] Zhang J., Wang X., Li M., Han J., Chen B., Wang B., Dai J.:

“NANOGP8 is a retrogene expressed in cancers”. FEBS J., 2006,

273, 1723.

[50] Fairbanks D.J., Fairbanks A.D., Ogden T.H., Parker G.J., Maughan

P.J.: “NANOGP8: evolution of a human-specific retro-oncogene”.

G3 (Bethesda), 2012, 2, 1447.

[51] Jeter C.R., Badeaux M., Choy G., Chandra D., Patrawala L., Liu C.,

et al.: “Functional evidence that the self-renewal gene NANOG regulates

human tumor development”. Stem Cells, 2009, 27, 993.

[52] Oh J.H., Do H.J., Yang H.M., Moon S.Y., Cha K.Y., Chung H.M.,

Kim J.H.: “Identification of a putative transactivation domain in

human Nanog”. Exp. Mol. Med., 2005, 37, 250.

[53] Do H.J., Lim H.Y., Kim J.H., Song H., Chung H.M., Kim J.H.: “An

intact homeobox domain is required for complete nuclear localization

of human Nanog”. Biochem. Biophys. Res. Commun., 2007, 353,

770.

[54] Park I.H., Zhao R., West J.A., Yabuuchi A., Huo H., Ince T.A., et al.:

“Reprogramming of human somatic cells to pluripotency with defined

factors”. Nature, 2008, 451, 141.

[55] Kuroda T., Tada M., Kubota H., Kimura H., Hatano S.Y., Suemori

H., et al.: “Octamer and Sox elements are required for transcriptional

cis regulation of Nanog gene expression”. Mol. Cell. Biol., 2005, 25,

2475

[56] Theunissen T.W., Costa Y., Radzisheuskaya A., van Oosten A.L.,

Lavial F., Pain B., et al.: “Reprogramming capacity of Nanog is functionally

conserved in vertebrates and resides in a unique homeodomain”.

Development, 2011, 138, 4853.

[57] Hart A.H., Hartley L., Parker K., Ibrahim M., Looijenga L.H., Pauchnik

M., et al.: “The pluripotency homeobox gene NANOG is expressed

in human germ cell tumors”. Cancer, 2005, 104, 2092.

[58] Ezeh U.I., Turek P.J., Reijo R.A., Clark A.T.: “Human embryonic

stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed

in both seminoma and breast carcinoma”. Cancer, 2005, 104,

2255.

[59] Hoei-Hansen C.E., Almstrup K., Nielsen J.E., Brask Sonne S.,

Graem N., Skakkebaek N.E., et al.: “Stem cell pluripotency factor

NANOG is expressed in human fetal gonocytes, testicular carcinoma

in situ and germ cell tumours”. Histopathology, 2005, 47, 48.

[60] Gillis A.J., Stoop H., Biermann K., van Gurp R.J., Swartzman E.,

Cribbes S., et al.: “Expression and interdependencies of pluripotency

factors LIN28, OCT3/4, NANOG and SOX2 in human testicular

germ cells and tumours of the testis”. Int. J. Androl., 2011, 34, e160.

[61] Han J., Zhang F., Yu M., Zhao P., Ji W., Zhang H., et al.: “RNA interference-

mediated silencing of NANOG reduces cell proliferation

and induces G0/G1 cell cycle arrest in breast cancer cells”. Cancer

Lett., 2012, 321, 80.

[62] Choi S.C., Choi J.H., Park C.Y., Ahn C.M., Hong S.J., Lim D.S.:

“Nanog regulates molecules involved in stemness and cell cycle-signaling

pathway for maintenance of pluripotency of P19 embryonal

carcinoma stem cells”. J. Cell Physiol., 2012, 227, 3678.

[63] Noh K.H., Kim B.W., Song K.H., Cho H., Lee Y.H., Kim J.H., et al.:

“Nanog signaling in cancer promotes stem-like phenotype and immune

evasion”. J. Clin. Invest., 2012, 122, 4077.

[64] Gu T.T., Liu S.Y., Zheng P.S.: “Cytoplasmic NANOG-positive stromal

cells promote human cervical cancer progression”. Am. J.

Pathol., 2012, 181, 652.

[65] Ozols R.F.: “Update on the management of ovarian cancer”. Cancer

J., 2002, 8, S22.

[66] Odicino F., Pecorelli S., Zigliani L., Creasman W.T.: “History of the

FIGO cancer staging system”. Int. J. Gynaecol. Obstet., 2008, 101,

205.

[67] Stuart G.C., Kitchener H., Bacon M., duBois A., Friedlander M., Ledermann

J., et al.: “2010 Gynecologic Cancer InterGroup (GCIG)

consensus statement on clinical trials in ovarian cancer: report from

the Fourth Ovarian Cancer Consensus Conference”. Int. J. Gynecol.

Cancer, 2011, 21, 750.

[68] Colombo N., Pecorelli S.: “What have we learned from ICON1 and

ACTION?” Int. J. Gynecol. Cancer, 2003, 13, 140.

[69] Vergote I., Trope C.G., Amant F., Kristensen G.B., Ehlen T., Johnson

N., et al.: “Neoadjuvant chemotherapy or primary surgery in stage

IIIC or IV ovarian cancer”. N. Engl. J. Med., 2010, 363, 943.

[70] Bookman M.A., Brady M.F., McGuire W.P., Harper P.G., Alberts

D.S., Friedlander M., et al.: “Evaluation of new platinum-based treatment

regimens in advanced-stage ovarian cancer: a Phase III Trial of

the Gynecologic Cancer Intergroup”. J. Clin. Oncol., 2009, 27, 1419

[71] Perren T.J., Swart A.M., Pfisterer J., Ledermann J.A., Pujade-Lauraine

E., Kristensen G., et al.: “A phase 3 trial of bevacizumab in

ovarian cancer”. N. Engl. J. Med., 2011, 365, 2484.

[72] Burger R.A., Brady M.F., Bookman M.A., Fleming G.F., Monk B.J.,

Huang H., et al.: “Incorporation of bevacizumab in the primary treatment

of ovarian cancer”. N. Engl. J. Med., 2011, 365, 2473.

[73] Blagosklonny M.V.: “Cancer stem cell and cancer stemloids: from

biology to therapy”. Cancer Biol. Ther., 2007, 6, 1684.

[74] Ishii H., Iwatsuki M., Ieta K., Ohta D., Haraguchi N., Mimori K.,

Mori M.: “Cancer stem cells and chemoradiation resistance”. Cancer

Sci., 2008, 99, 1871.

[75] Dean M.: “ABC transporters, drug resistance, and cancer stem cells”.

J Mammary Gland Biol. Neoplasia, 2009, 14, 3.

[76] Bourguignon L.Y., Peyrollier K., Xia W., Gilad E.: “Hyaluronan-

CD44 interaction activates stem cell marker Nanog, Stat-3-

mediated MDR1 gene expression, and ankyrin-regulated multidrug

efflux in breast and ovarian tumor cells”. J. Biol. Chem., 2008, 283,

17635

[77] Fraser M., Bai T., Tsang B.K.: “Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation

and nuclear function”. Int. J. Cancer, 2008, 122, 534

[78] Nikolaev A.Y., Li M., Puskas N., Qin J., Gu W.: “Parc: a cytoplasmic

anchor for p53”. Cell, 2003, 112, 29.

[79] Woo M.G., Xue K., Liu J., McBride H., Tsang B.K.: “Calpain-mediated

processing of p53-associated parkin-like cytoplasmic protein

(PARC) affects chemosensitivity of human ovarian cancer cells by

promoting p53 subcellular trafficking”. J. Biol. Chem., 2012, 287,

3963.

[80] Wallace-Brodeur R.R., Lowe S.W.: “Clinical implications of p53

mutations”. Cell Mol. Life Sci., 1999, 55, 64.

[81] Noh K.H., Lee Y.H., Jeon J.H., Kang T.H., Mao C.P., Wu T.C., Kim

T.W.: “Cancer vaccination drives Nanog-dependent evolution of

tumor cells toward an immune-resistant and stem-like phenotype”.

Cancer Res., 2012, 72, 1717

[82] De Stefano I., Battaglia A., Zannoni G.F., Prisco M.G., Fattorossi A.,

Travaglia D., et al.: “Hyaluronic acid-paclitaxel: effects of intraperitoneal

administration against CD44(+) human ovarian cancer

xenografts”. Cancer Chemother. Pharmacol., 2011, 68, 107.

[83] Su D., Deng H., Zhao X., Zhang X., Chen L., Chen X., et al.: “Targeting

CD24 for treatment of ovarian cancer by short hairpin RNA”.

Cytotherapy, 2009, 11, 642.

[84] Davis M.E., Chen Z.G., Shin D.M.: “Nanoparticle therapeutics: an

emerging treatment modality for cancer”. Nat. Rev. Drug Discov.,

2008, 7, 771.

[85] Landen C.N. Jr., Goodman B., Katre A.A., Steg A.D., Nick A.M.,

Stone R.L., et al.: “Targeting aldehyde dehydrogenase cancer stem

cells in ovarian cancer”. Mol. Cancer Ther., 2010, 9, 3186.

[86] Whitworth J.M., Londono-Joshi A.I., Sellers J.C., Oliver P.J., Muccio

D.D., Atigadda V.R., et al.: “The impact of novel retinoids in combination

with platinum chemotherapy on ovarian cancer stem cells”. Gynecol.

Oncol., 2012, 125, 226.

[87] Ruiz-Vela A., Aguilar-Gallardo C., Martinez-Arroyo A.M., Soriano-

Navarro M., Ruiz V., Simon C.: “Specific unsaturated fatty acids enforce

the transdifferentiation of human cancer cells toward

adipocyte-like cells”. Stem Cell Rev., 2011, 7, 898

[88] Jain A.K., Allton K., Iacovino M., Mahen E., Milczarek R.J., Zwaka

T.P., et al.: “p53 regulates cell cycle and microRNAs to promote differentiation

of human embryonic stem cells”. PLoS Biol., 2012, 10,

e1001268.

[89] Yu Z., Li Y., Fan H., Liu Z., Pestell R.G.: “miRNAs regulate stem

cell self-renewal and differentiation”. Front. Genet., 2012, 3, 191.

[90] Zhang J., Espinoza L.A., Kinders R.J., Lawrence S.M., Pfister T.D.,

Zhou M., et al.: “NANOG modulates stemness in human colorectal

cancer”. Oncogene, 2013, 32, 4397.

[91] Du Y., Shi L., Wang T., Liu Z., Wang Z.: “Nanog siRNA plus Cisplatin

may enhance the sensitivity of chemotherapy in esophageal

cancer”. J. Cancer Res. Clin. Oncol., 2012, 138, 1759.

[92] Lin T., Chao C., Saito S., Mazur S.J., Murphy M.E., Appella E., Xu

Y.: “p53 induces differentiation of mouse embryonic stem cells by

suppressing Nanog expression”. Nat. Cell. Biol., 2005, 7, 165.

[93] Zbinden M., Duquet A., Lorente-Trigos A., Ngwabyt S.N., Borges I.,

Ruiz i Altaba A.: “NANOG regulates glioma stem cells and is essential

in vivo acting in a cross-functional network with GLI1 and

p53”. EMBO J., 2010, 29, 2659


Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top