Article Data

  • Views 441
  • Dowloads 141

Original Research

Open Access

Comparison of p57, c-erbB-2, CD117, and Bcl-2 expression in the differential diagnosis of hydatidiform mole and hydropic abortion

  • O. Erol1,*,
  • D. Suren2
  • B. Tutus2
  • K. Yararbas3
  • A. Sayiner2
  • M.K. Ozel1
  • A.U. Derbent1
  • C. Sezer2

1Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Turkey

2Department of Pathology, Antalya Training and Research Hospital, Antalya, Turkey

3Department of Medical Genetics, Duzen Laboratories, Istanbul, Turkey

DOI: 10.12892/ejgo3139.2016 Vol.37,Issue 4,August 2016 pp.522-529

Published: 10 August 2016

*Corresponding Author(s): O. Erol E-mail: dronurerol@hotmail.com

Abstract

Purpose: To explore the utility of p57, c-erbB-2, CD117, and Bcl-2 immunostaining in the differential diagnosis of complete hydatidiform mole (CHM), partial hydatidiform mole (PHM), and hydropic abortion (HA). Materials and Methods: Immunohistochemical expression of the p57, c-erbB-2, CD117, and Bcl-2 proteins were investigated semi-quantitatively using paraffin-embedded tissue sections from histologically unequivocal cases of CHM (n = 20), PHM (n = 23), and HA (n = 17). Results: All cases of CHM exhibited a striking absence of p57 expression. The percentage of positive p57 staining was similar between PHMs (73.9%) and HAs (76.5%) (p > 0.05). The comparison of c-erbB-2 expression revealed a significantly higher percentage of positive c-erbB-2 staining in CHMs (45%) compared with that in PHMs (8.7%) and HAs (5.9%) (p = 0.006 and 0.01, respectively). The CD117 expression pattern (immunoreactivity score, percentage of positive cells, and staining intensity) was significantly lower in HAs compared with that in PHMs and CHMs (p < 0.05 for all). A significantly increased Bcl-2 expression pattern was observed in HAs compared with that in PHMs and CHMs (p < 0.05 for all). Conclusion: Immunohistochemical examination of p57, c-erbB-2, CD117, and Bcl-2 expression represents a relatively simple, reliable, and cost-efficient procedure to definitively distinguish among CHM, PHM, and HA.

Keywords

Bcl-2; CD117; c-erbB-2; Hydatidiform mole; p57.

Cite and Share

O. Erol,D. Suren,B. Tutus,K. Yararbas,A. Sayiner,M.K. Ozel,A.U. Derbent,C. Sezer. Comparison of p57, c-erbB-2, CD117, and Bcl-2 expression in the differential diagnosis of hydatidiform mole and hydropic abortion. European Journal of Gynaecological Oncology. 2016. 37(4);522-529.

References

[1] Soper J.T.: “Gestational trophoblastic disease”. Obstet. Gynecol., 2006, 108, 176.

[2] Fukunaga M., Katabuchi H., Nagasaka T., Mikami Y., Minamiguchi S., Lage J.M.: “Interobserver and intraobserver variability in the diagnosis of hydatidiform mole”. Am. J. Surg. Pathol., 2005, 29, 942.

[3] Castrillon D.H., Sun D., Weremowicz S., Fisher R.A., Crum C.P., Genest D.R.: “Discrimination of complete hydatidiform mole from its mimics by immunohistochemistry of the paternally imprinted gene product p57KIP2”. Am. J. Surg. Pathol., 2001, 25, 1225.

[4] Klapper L.N, Kirschbaum M.H., Sela M., Yarden Y.:“Biochemical and clinical implications of the ErbB/HER signalling network of growth factor receptors”. Adv. Cancer. Res., 2000, 77, 25.

[5] Sharkey A.M., Jokhi P.P., King A., Loke Y.W., Brown K.D., Smith S.K.: “Expression of c-kit and kit ligand at the human maternofetal interface”. Cytokine, 1994, 6, 195.

[6] Roskoski R. Jr.: “Structure and regulation of Kit protein-tyrosine kinase- the stem cell factor receptor”. Biochem. Biophys. Res. Comm., 2005, 338, 1307.

[7] Mochizuki M., Maruo T., Matsuo H., Samoto T., Ishihara N.: “Biology of human trophoblast”. Int. J. Gynaecol. Obstet., 1998, 60, S21.

[8] Sgarbosa F., Barbisan L.F., Brasil M.A., Costa E., Calderon I.M., Gonçalves C.R, et al.: “Changes in apoptosis and Bcl-2 expression in human hyperglycemic, term placental trophoblast”. Diabetes Res. Clin. Pract., 2006, 73, 143.

[9] Wells M.: “The pathology of gestational trophoblastic disease: recent advances”. Pathology, 2007, 39, 88.

[10] Murphy K.M., McConnell T.G., Hafez M.J., Vang R., Ronnett B.M.: “Molecular genotyping of hydatidiform moles: analytic validation of a multiplex short tandem repeat assay”. J. Mol. Diagn., 2009, 11, 598.

[11] Menczer J.,Schreiber L.,Berger E.,Golan A., Levy T.: “Assessmentof Her- 2/neu expression in hydatidiform moles for prediction of subsequent gestational trophoblastic neoplasia”. Gynecol. Oncol., 2007, 104, 675.

[12] Hussein M.R.: “Analysis of p53, BCL-2 and epidermal growth factor receptor protein expression in the partial and complete hydatidiform moles”. Exp. Mol. Pathol., 2009, 87, 63.

[13] Uzunlar A.K., Yilmaz F., Bayhan G., Akkuş Z.: Expressions of p53, proliferating cell nuclear antigen, and Ki-67 in gestational trophoblastic diseases. Eur. J. Gynaecol. Oncol., 2002, 23, 79.

[14] Jun S.Y., Ro J.Y., Kim K.R.: “P57kip2 is useful in the classification and differential diagnosis of complete and partial hydatidiform moles”. Histopathology, 2003, 43, 17.

[15] Merchant S.H., Amin M.B., Viswanatha D.S., Malhotra R.K.,Moehlenkamp C., Joste N.E.: “P57KIP2 immunohistochemistr y in early molar pregnancies: emphasis on its complementary role in the differential diagnosis of hydropic abortuses”. Hum. Pathol., 2005, 36, 180.

[16] Sarmadi S., Izadi-Mood N., Abbasi A., Sanii S.: “p57KIP2 immunohistochemical expression: a useful diagnostic tool in discrimination between complete hydatidiform mole and its mimics”. Arch. Gynecol. Obstet., 2011, 283, 743.

[17] McConnell T.G., Norris-Kirby A., Hagenkord J.M., Ronnett B.M., Murphy K.M.: “Complete hydatidiform mole with retained maternal chromosomes 6 and 11”. Am. J. Surg. Pathol., 2009, 33, 1409.

[18] DeScipio C., Haley L., Beierl K., Pandit A.P., Murphy K.M., Ronnett B.M.: “Diandric triploid hydatidiform mole with loss of maternal chromosome 11”. Am. J. Surg. Pathol,. 2011, 35, 1586.

[19] Landolsi H., Missaoui N., Brahem S., Hmissa S., Gribaa M., Yacoubi M.T.: “The usefulness of p57(KIP2) immunohistochemical stainingand genotyping test in the diagnosis of the hydatidiform mole”. Pathol. Res. Pract., 2011, 207, 498.

[20] Kipp B.R., Ketterling R.P., Oberg T.N., Cousin M.A., Plagge A.M., Wiktor A.E., et al.: “Comparison of fluorescence in situ hybridization, p57 immunostaining, flow cytometry, and digital image analysis for diagnosing molar and nonmolar products of conception”. Am. J. Clin. Pathol., 2010, 133, 196.

[21] Hoffner L., Dunn J., Esposito N., Macpherson T., Surti U.: “p57KIP2 immunostaining and molecular cytogenetics: combined approach aids in diagnosis of morphologically challenging cases with molar phenotype and in detecting androgenetic cell lines in mosaic/chimeric conceptions”. Hum. Pathol., 2008, 39, 63.

[22] Hassan H.T.: “c-kit expression in human normal and malignant stem cells prognostic and therapeutic implications”. Leuk. Res., 2009, 33, 5.

[23] Ahmed A., Lacson A., Gilbert-Barness E.: “Immunohistochemical expression of endothelial nitric oxide synthase and C-kit in the placenta of complete hydatidiform mole”. Fetal Pediatr. Pathol., 2005, 24, 141.

[24] Byramji A.T., Yee Khong T.: “Expression of c-kit in hydatidiformmole”. Pathology, 2009, 41, 193.

[25] Kim C.J., Choe Y.L., Yoon B.H., Kim C.W., Chi J.G.: “Patterns of bcl-2 expression in placenta”. Path. Res. Prac., 1995, 191, 1239.

[26] Fulop V., Mok S.C., Genest D.R., Szigetvari I., Cseh I., Berkowitz R.S.: “c-myc, c-erbB-2, c-fms and bcl-2 oncoproteins”. Expression in normal placenta, partial and complete mole, and choriocarcinoma. J. Reprod. Med., 1998, 43, 101.

[27] Al-Bozom I.A.: “p53 and Bcl-2 oncoprotein expression in placentas with hydropic changes and partial and complete moles”. APMIS, 2000, 108, 756.

[28] Yazaki-Sun S., Daher S., de Souza Ishigai M.M., Alves M.T., Mantovani T.M., Mattar R.: “Correlation of c-erbB-2 oncogene and p53 tumor suppressor gene with malignant transformation of hydatidiform mole”. J. Obstet. Gynaecol. Res., 2006, 32, 265.

[29] Yang X., Zhang Z., Jia C., Li J., Yin L., Jiang S.: “The relationship between expression of c-ras, c-erbB-2, nm23, and p53 gene products and development of trophoblastic tumor and their predictive significance for the malignant transformation of complete hydatidiform mole”. Gynecol. Oncol., 2002, 85, 438.

[30] Bauer M., Horn L.C., Kowalzik J., Mair W., Czerwenka K.: “C-erbB2 amplification and expression in gestational trophoblastic disease correlates with DNA content and karyotype”. Gen. Diagn. Pathol., 1997, 143, 185.

[31] Maggiori M.S., Peres L.C.: “Morphological, immunohistochemicaland chromosome in situ hybridization in the differential diagnosis of hydatidiform mole and hydropic abortion”. Eur. J. Obstet. Gynecol. Reprod. Biol., 2007, 135, 170.

[32] Osterheld M.C., Caron L., Chaubert P., Meagher-Villemure K.: “Combination of immunohistochemistry and ploidy analysis to assist histopathological diagnosis of molar diseases”. Clin. Med. Pathol., 2008, 1, 61.

[33] Le Gallo R.D., Stelow E.B., Ramirez N.C., Atkins K.A.: “Diagnosis of hydatidiform moles using p57 immunohistochemistry and HER2 fluorescent in situ hybridization”. Am. J. Clin. Pathol., 2008, 129, 749.

[34] Lai C.Y., Chan K.Y., Khoo U.S., Ngan H.Y., Xue W.C., Chiu P.M., et al.: “Analysis of gestational trophoblastic disease by genotyping and chromosome in situ hybridization”. Mod. Pathol., 2004, 17, 40.

[35] Bifulco C. Johnson C., Hao L., Kermalli H., Bell S., Hui P.: “Genotypic analysis of hydatidiform mole: an accurate and practical method of diagnosis”. Am. J. Surg. Pathol., 2008, 32, 445.

[36] Banet N., DeScipio C., Murphy K.M., Beierl K., Adams E., Vang R., et al.: “Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping”. Mod. Pathol., 2014, 27, 238.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top