Article Data

  • Views 518
  • Dowloads 116

Reviews

Open Access

The role of microRNAs in endometrial cancer and influence on future therapy: focusing on miRNA-21

  • B. Rak1,2
  • J.M. Marczewska3
  • P. Włodarski1,*,

1Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland

2Postgraduate School of Molecular Medicine, Warsaw, Poland

3Department of Pathomorphology, Center for Biostructure Research, Medical Univeristy of Warsaw, Warsaw, Poland

DOI: 10.12892/ejgo3200.2016 Vol.37,Issue 5,October 2016 pp.599-603

Published: 10 October 2016

*Corresponding Author(s): P. Włodarski E-mail: pawel.wlodarski@wum.edu.pl

Abstract

MicroRNAs are small noncoding polynucleotides, which are involved in numerous biological processes including cell proliferation, differentiation, embryonic development, as well as regulation of cell death and survival. Recent investigations have shown impact of microRNAs on cancers prognosis and diagnosis. Current review focused on the role of microRNA-21 in cancers tumorigenesis. Endometrial cancer is the most common gynecological malignancy and the fourth most common in general classification of cancers in Western Europe; thus discovering new molecules may become a useful diagnostic tool. Furthermore, in this review, the authors emphasized microRNAs having considerable influence on endometrial cancer development. Finally, they highlighted the role of microRNAs as a target for future therapy and circulating microRNAs as a potential biomarker in malignancies.

Keywords

MicroRNA; MicroRNA-21 in cancers; Endometrial cancer.

Cite and Share

B. Rak,J.M. Marczewska,P. Włodarski. The role of microRNAs in endometrial cancer and influence on future therapy: focusing on miRNA-21. European Journal of Gynaecological Oncology. 2016. 37(5);599-603.

References

[1] Rajewsky N., Socci N.D.: “Computational identification of microRNA targets”. Dev. Biol., 2004, 267, 529.

[2] Lee R.C., Feinbaum R.L., Ambros V.: “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin- 14”. Cell, 1993, 75, 843.

[3] Ambros V.: “The functions of animal microRNAs”. Nature, 2004, 431, 350.

[4] Lee S.I., Jeon M.H., Kim J.S., Park J.K., Park E.W., Jeon I.S., Byun S.J.: “The miR-302 cluster transcriptionally regulated by POUV, SOX and STAT5B controls the undifferentiated state through the post-transcriptional repression of PBX3 and E2F7 in early chick development”. Mol. Reprod. Dev., 2014, 81, 1103.

[5] Li Q.J., Chau J., Ebert P.J., Sylvester G., Min H., Liu G., et al.: “miR- 181a is an intrinsic modulator of T cell sensitivity and selection”. Cell, 2007, 129, 147.

[6] Feng C., Neumeister V., Ma W., Xu J., Lu L., Bordeaux J., et al.: “Lin28 regulates HER2 and promotes malignancy through multiple mechanisms”. Cell Cycle, 2012, 11, 2486.

[7] Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., Kim V.N.: “MicroRNA genes are transcribed by RNA polymerase II”. EMBO J., 2004, 23, 4051.

[8] Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., et al.: “The nuclear RNase III Drosha initiates microRNA processing”. Nature, 2003, 425, 415.[9] Bohnsack M.T., Czaplinski K., Gorlich D.: “Exportin 5 is a RanGTPdependent dsRNA-binding protein that mediates nuclear export of premiRNAs”. RNA, 2004, 10, 185.

[10] Bartel D.P.: “MicroRNAs: target recognition and regulatory functions”. Cell, 2009, 136, 215.

[11] Hutvágner G., Zamore P.D.: “A microRNA in a multiple-turnover RNAi enzyme complex”. Science, 2002, 297, 2056.

[12] Pradistassanee P., Pariyakanok P.: “Anomalies of the anterior belly of the digastric muscle”. J. Dent. Assoc. Thai, 1975, 25, 223.

[13] Madhavi C., Jacob M.: “Morphometry of mitochondria in the choroidal ependyma of hydrocephalic guineapigs”. Indian J. Med. Res., 1992, 96, 72.

[14] Stark A., Lin M.F., Kheradpour P., Pedersen J.S., Parts L., Carlson J.W., et al.: “Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures”. Nature, 2007, 450, 219.

[15] Ørom U.A., Nielsen F.C., Lund A.H.: “MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation”. Mol. Cell, 2008, 30, 460.

[16] Eiring A.M., Harb J.G., Neviani P., Garton C., Oaks J.J., Spizzo R., et al.: “miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts”. Cell, 2010, 140, 652.

[17] Kim D.H., Saetrom P., Snøve O. Jr., Rossi J.J.: “MicroRNA-directed transcriptional gene silencing in mammalian cells”. Proc. Natl. Acad. Sci. U S A, 2008, 105, 16230.

[18] Khraiwesh B., Arif M.A., Seumel G.I., Ossowski S., Weigel D., Reski R., Frank W., et al.: “Transcriptional control of gene expression by microRNAs”. Cell, 2010, 140, 111.

[19] Friedman R.C., Farh K.K., Burge C.B., Bartel D.P.: “Most mammalian mRNAs are conserved targets of microRNAs”. Genome Res., 2009, 19, 92.

[20] Wojcicka A., de la Chapelle A., Jazdzewski K.: “MicroRNA-related sequence variations in human cancers”. Hum. Genet., 2014, 133, 463.

[21] Duan R., Pak C., Jin P.: “Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA”. Hum. Mol. Genet., 2007, 16, 1124.

[22] Gumireddy K., Young D.D., Xiong X., Hogenesch J.B., Huang Q., Deiters A.: “Small-molecule inhibitors of microrna miR-21 function”. Angew. Chem. Int. Ed. Engl., 2008, 47, 7482.

[23] Schetter A.J., Leung S.Y., Sohn J.J., Zanetti K.A., Bowman E.D., Yanaihara N., et al.: “MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma”. JAMA, 2008, 299, 425.

[24] Lei B.X., Liu Z.H., Li Z.J., Li C., Deng Y.F.: “miR-21 induces cell proliferation and suppresses the chemosensitivity in glioblastoma cells via downregulation of FOXO1”. Int. J. Clin. Exp. Med., 2014, 7, 2060.

[25] Iorio M.V., Ferracin M., Liu C.G., Veronese A., Spizzo R., Sabbioni S., et al.: “MicroRNA gene expression deregulation in human breast cancer.” Cancer Res, 2005, 65, 7065.

[26] Zheng Q., Peskoe S.B., Ribas J., Rafiqi F., Kudrolli T., Meeker A.K., et al.: “Investigation of miR-21, miR-141, and miR-221 expression levels in prostate adenocarcinoma for associated risk of recurrence after radical prostatectomy”. Prostate, 2014, 74, 1655.

[27] Bloomston M., Frankel W.L., Petrocca F., Petrocca F., Volinia S., Alder H., et al.: “MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pa ncreatitis”. JAMA, 2007, 297, 1901.

[28] Uozaki H., Morita S., Kumagai A., Aso T., Soejima Y., Takahashi Y., Fukusato T., et al.: “Stromal miR-21 is more important than miR- 21 of tumour cells for the progression of gastric cancer”. Histopathology, 2014, 65, 775.

[29] Pan F., Mao H., Deng L., Li G., Geng P.: “Prognostic and clinicopathological significance of microRNA-21 overexpression in breast cancer: a meta-analysis”. Int. J. Clin. Exp. Pathol., 2014, 7, 5622.

[30] Farrell J.J., Toste P., Wu N., Li L., Wong J., Malkhassian D., et al.: “Endoscopically acquired pancreatic cyst fluid microRNA 21 and 221 are associated with invasive cancer”. Am. J. Gastroenterol., 2013, 108, 1352.

[31] Dong Y., Yu J., Ng S.S.: “MicroRNA dysregulation as a prognostic biomarker in colorectal cancer”. Cancer Manag. Res., 2014, 6, 405.

[32] Bera A., Das F., Ghosh-Choudhury N., Kasinath B.S., Abboud H.E., Choudhury G.G.: “microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion”. Exp. Cell. Res., 2014, 328, 99.

[33] Connelly C.M., Deiters A.: “Control of oncogenic miRNA function by light-activated miRNA antagomirs”. Methods Mol. Biol., 2014, 1165, 99.

[34] Wu F., Dong F., Arendovich N., Zhang J., Huang Y., Kwon J.H.: “Divergent influence of microRNA-21 deletion on murine colitis phenotypes”. Inflamm. Bowel Dis., 2014, 20, 1972.

[35] Gomez I.G., MacKenna D.A., Johnson B.G., Kaimal V., Roach A.M., Ren S.: “Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways”. J. Clin. Invest., 2015, 1, 141.

[36] Meng F., Henson R., Wehbe-Janek H., Ghoshal K., Jacob S.T., Patel T.: “MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer”. Gastroenterology, 2007, 133, 647.

[37] Frankel L.B., Christoffersen N.R., Jacobsen A., Lindow M., Krogh A., Lund A.H.: “Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells”. J. Biol. Chem., 2008, 283, 1026.

[38] Huang S., Wang C., Yi Y., Sun X., Luo M., Zhou Z., et al.: “Krüppellike factor 9 inhibits glioma cell proliferation and tumorigenicity via downregulation of miR-21”. Cancer Lett., 2015, 356, 547.

[39] Dong Z., Ren L., Lin L., Li J., Huang Y., Li J.: “Effect of microRNA- 21 on multidrug resistance reversal in A549/DDP human lung cancer cells”. Mol. Med. Rep., 2015, 11, 682.

[40] Doberstein K., Bretz N.P., Schirmer U., Fiegl H., Blaheta R., Breunig C., et al.: “miR-21-3p is a positive regulator of L1CAM in several human carcinomas”. Cancer Let., 2014, 354, 55.

[41] Ratner E.S., Tuck D., Richter C., Nallur S., Patel R.M., Schultz V., et al.: “MicroRNA signatures differentiate uterine cancer tumor subtypes”.Gynecol. Oncol., 2010, 118, 251.

[42] Plataniotis G., Castiglione M.: “ESMO Guidelines Working Group. Endometrial cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up”. Ann. Oncol., 2010, 21, 41.

[43] Lee T.S., Jeon H.W., Kim Y.B., Kim Y.A., Kim M.A., Kang S.B.: “Aberrant microRNA expression in endometrial carcinoma using formalinfixed paraffin-embedded (FFPE) tissues”. PLoS One, 2013, 8, 81421.

[44] Dong P., Karaayvaz M., Jia N., Kaneuchi M., Hamada J., Watari H., et al.: “Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis”. Oncogene, 2013, 32, 3286.

[45] Torres A., Torres K., Pesci A., Ceccaroni M., Paszkowski T., Cassandrini P.., et al.: “Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients”. Int. J. Cancer, 2013, 132, 1633.

[46] Wang Y., Adila S., Zhang X., Dong Y., Li W., Zhou M., Li T.: “MicroRNA expression signature profile and its clinical significance in endometrioid carcinoma”. Zhonghua Bing Li Xue Za Zhi, 2014, 43, 88.

[47] Lee L.J., Ratner E., Uduman M., Winter K., Boeke M., Greven K.M., et al.: “The KRAS-variant and miRNA expression in RTOG endometrial cancer clinical trials 9708 and 9905”. PLoS One, 2014, 9, 94167.

[48] Dong P., Kaneuchi M., Watari H., Sudo S., Sakuragi N.: “MicroRNA- 106b modulates epithelial-mesenchymal transition by targetingTWIST1 in invasive endometrial cancer cell lines”. Mol. Carcinog., 2014, 53, 349.

[49] Konno Y., Dong P., Xiong Y., Suzuki F., Lu J., Cai M., Watari H., et al.: “MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells.” Oncotarget, 2014, 5, 6049.

[50] Hwang J.H., Voortman J., Giovannetti E., Steinberg S.M., Leon L.G., Kim Y.T., et al.: “Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer”. PLoS One, 2010, 5, 10630.

[51] Valeri N., Gasparini P., Braconi C., Paone A., Lovat F., Fabbri M., et al.: “MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2)”. Proc. Natl. Acad. Sci. U S A, 2010, 107, 21098.

[52] Dias N., Stein C.A.: “Antisense oligonucleotides: basic concepts and mechanisms”. Mol. Cancer Ther., 2002, 1, 347.

[53] Chiarantini L., Cerasi A., Fraternale A., Millo E., Benatti U., Sparnacci K., et al.: “Comparison of novel delivery systems for antisense peptide nucleic acids”. J. Control Release, 2005, 109, 24.

[54] Zuhorn I.S., Engberts J.B., Hoekstra D.: “Gene delivery by cationic lipid vectors: overcoming cellular barriers”. Eur. Biophys. J., 2007, 36, 349.

[55] Chirila T.V., Rakoczy P.E., Garrett K.L., Lou X., Constable I.J.: “Theuse of synthetic polymers for delivery of therapeutic a ntisense oligodeoxynucleotides”. Biomaterials, 2002, 23, 321.

[56] Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A.K., Han M.S., Mirkin C.A.: “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation”. Science, 2006, 312, 1027.

[57] Ekin A., Karatas O.F., Culha M., Ozen M.: “Designing a gold nanoparticle- based nanocarrier for microRNA transfection into the prostate and breast cancer cells”. J. Gene Med., 2014, 16, 331.

[58] Yoo S.S., Razzak R., Bédard E., Guo L., Shaw A.R., Moore R.B., Roa W.H.: “Layered gadolinium-based nanoparticle as a novel delivery platform for microRNA therapeutics”. Nanotechnology, 2014, 25, 425102.

[59] Mishra P.J.: “MicroRNAs as promising biomarkers in cancer diagnostics”. Biomark. Res., 2014, 2, 19.

[60] Fujita Y., Yoshioka Y., Ito S., Araya J., Kuwano K., Ochiya T.: “Intercellular communication by extracellular vesicles and their microRNAs in asthma”. Clin. Ther., 2014, 36, 873.

[61] Fujita Y., Kuwano K., Ochiya T., Takeshita F.: “The impact of extracellular vesicle-encapsulated circulating microRNAs in lung cancer research”. Biomed. Res. Int., 2014, 2014, 486413.

[62] Wang L., Chen Y.J., Xu K., Xu H., Shen X.Z., Tu R.Q.: “Circulating microRNAs as a fingerprint for endometrial endometrioid adenocarcinoma”. PLoS One, 2014, 9, 110767.

[63] Dong P., Kaneuchi M., Watari H., Hamada J., Sudo S., Ju J., Sakuragi N.: “MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1”. Mol. Cancer, 2011, 10, 99.

[64] Hiroki E., Suzuki F., Akahira J., Nagase S., Ito K., Sugawara J, et al.: “MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma”. Int J Cancer, 2012, 131, 395.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top