Article Data

  • Views 285
  • Dowloads 122

Original Research

Open Access

The regulation network and network motif analysis in ovarian cancer

  • A-juan Liang1
  • Yan Hong1
  • Yun Sun1
  • Min zhi Gao1,*,
  • Xiao ming Zhao1

1Department of Reproductive Medicine, Renji Hospital, Shanghai Jliaotong University, School of Medicine, Shanghai (China)

DOI: 10.12892/ejgo340214 Vol.34,Issue 2,March 2013 pp.170-174

Published: 24 March 2013

*Corresponding Author(s): Min zhi Gao E-mail:


Objective: Several gene alterations have been identified associated with ovarian cancer (OC) development. However, how these genetic elements are coordinated in transcription network during OC initiation and progression is poorly understood. Thus, the objective of this study was to interpret the transcription regulation network of OC. Materials and Methods: The GSE14407 microarray data was used for analysis of the transcription regulation network of OC. Results: The results showed that the TP53 (tumor protein p53) was the most crucial transcription factor in the transcriptome network. P53 could down-regulate CDC14A (CDC14 cell division cycle 14 homolog A [S. cerevisiae]) and FAS (TNF receptor superfamily, member 6) expression, but up-regulate SFN (stratifin) and THBS1 (thrombospondin 1) expression to involve in pathways in cancer, cell cycle, p53 signaling pathway, and apoptosis pathway. Conclusion: This transcriptional regulation may provide a better understanding of molecular mechanism and some potential therapeutic targets in the treatment of OC.


Regulation network; Network motif analysis; Ovarian cancer.

Cite and Share

A-juan Liang,Yan Hong,Yun Sun,Min zhi Gao,Xiao ming Zhao. The regulation network and network motif analysis in ovarian cancer. European Journal of Gynaecological Oncology. 2013. 34(2);170-174.


[1] Soslow R.A.: “Histologic subtypes of ovarian carcinoma: an overview”. Int. J. Gynecol. Pathol., 2008, 27, 161.

[2] Vergote I., Tropé C.G., Amant F., Kristensen G.B., Ehlen T., Johnson N. et al.: “Neoadjuvant chemotherapy or primary surgery in Stage IIIC or IV ovarian cancer”. New Engl. J. Med., 2010, 363, 943.

[3] Ozols R.F., Bundy B.N., Greer B.E., Fowler J.M., Clarke-Pearson D., Burger R.A. et al.: “Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected Stage III ovarian cancer: a Gynecologic Oncology Group study”. J. Clin. Oncol., 2003, 21, 3194.

[4] Shan W., Liu J.: “Epithelial ovarian cancer”. Cell. Cycle, 2009, 8, 731.

[5] Chen C.H., Shen J., Lee W.J., Chow S.N.: “Overexpression of cyclin D1 and c Myc gene products in human primary epithelial ovarian cancer”. Int. J. Gynecol. Cancer, 2005, 15, 878.

[6] Singer G., Oldt III R., Cohen Y., Wang B.G., Sidransky D., Kurman R.J. et al.: “Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma”. J. Nat. Cancer Inst., 2003, 95, 484.

[7] Landen C.N. Jr., Birrer M.J., Sood A.K. “Early events in the pathogenesis of epithelial ovarian cancer”. J. Clin. Oncol., 2008, 26,995.

[8] Reimer D., Sadr S., Wiedemair A., Goebel G., Concin N., Hofstetter G. et al.: “Expression of the E2F family of transcription factors and its clinical relevance in ovarian cancer”. Ann. N.Y. Acad. Scie., 2006, 1091, 270.

[9] Suh D., Yoon M., Choi K., Kim J.: “Significance of E2F 1 overexpression in epithelial ovarian cancer”. Int. J. Gynecol. Cancer, 2008, 18, 492.

[10] Nielsen J.S., Jakobsen E., Hølund B., Bertelsen K., Jakobsen A.: “Prognostic significance of p53, Her 2, and EGFR overexpression in borderline and epithelial ovarian cancer”. Int. J. Gynecol. Cancer, 2004, 14, 1086.

[11] Brader K., Wolf J., Chakrabarty S., Price J.: “Epidermal growth factor receptor (EGFR) antisense transfection reduces the expression of EGFR and suppresses the malignant phenotype of a human ovarian cancer cell line”. Oncol. Rep., 1998, 5, 1269.

[12] Sewell J., Macleod K., Ritchie A., Smyth J., Langdon S.: “Targeting the EGF receptor in ovarian cancer with the tyrosine kinase inhibitor ZD 1839 (‘Iressa’)”. Br. J. Cancer, 2002, 86, 456.

[13] Hanada N., Lo H.W., Day C.P., Pan Y., Nakajima Y., Hung M.C.: “Co regulation of B Myb expression by E2F1 and EGF receptor”. Mol. Carcinogen., 2006, 45, 10.

[14] Barletta C., Lazzaro D., Prosperi P.R., Testa U., Grignani F., Ragusa R. et al.: “C-MYB activation and the pathogenesis of ovarian cancer”. Eur. J. Gynaecol. Oncol., 1992, 13, 53.

[15] Ghosh-Choudhury T., Xiao W., Gunaratne P., Anderson M.: “Loss of miR-148a/b expression promotes ovarian cancer by targeting Erbb3 and MYB”. Gynecol. Oncol., 2012, 125, S98.

[16] Matys V., Fricke E., Geffers R., Gossling E., Haubrock M., Hehl R. et al.: “TRANSFAC: transcriptional regulation, from patterns to profiles”. Nucleic. Acids Res., 2003, 31, 374.

[17] Jiang C., Xuan Z., Zhao F., Zhang M.Q.: “TRED: a transcriptional regulatory element database, new entries and other development”. Nucleic Acids Res., 2007, 35, 137.

[18] Smyth G.K.: “Linear models and empirical bayes methods for assessing differential expression in microarray experiments”. Stat. Appl. Genet. Mol. Biol., 2004, 3, Epub Feb. 12.

[19] Derrick T.R., Bates B.T., Dufek J.S.: “Evaluation of time-series data sets using the Pearson product-moment correlation coefficient”. Med. Sci. Sports Exerc., 1994, 26, 919.

[20] Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D. et al.: “Cytoscape: a software environment for integrated models of biomolecular interaction networks”. Genome Res., 2003, 13, 2498.

[21] Wernicke S., Rasche F.: “FANMOD: a tool for fast network motif detection”. Bioinformatics, 2006, 22, 1152.

[22] Huang da W., Sherman B.T., Lempicki R.A.: “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources”. Nat. Protoc., 2009, 4, 44.

[23] Schuijer M., Berns E.M.J.J.: “TP53 and ovarian cancer”. Hum. Mut., 2003, 21, 285.

[24] Ahmed A.A., Etemadmoghadam D., Temple J., Lynch A.G., Riad M., Sharma R. et al.: “Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary”. J. Pathol., 2010, 221, 49.

[25] Salani R., Kurman R., Giuntoli R. II, Gardner G., Bristow R., Wang T.L. et al.: “Assessment of TP53 mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance”. Int. J. Gynecol. Cancer, 2008, 18, 487.

[26] Havrilesky L., Darcy K.M., Hamdan H., Priore R..L, Leon J., Bell J. et al.: “Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: a Gynecologic Oncology Group Study”. J. Clin. Oncology, 2003, 21, 3814.

[27] Wang Y., Helland Å., Holm R., Skomedal H., Abeler V., Danielsen H. et al.: “P53 mutations in early-stage ovarian carcinoma, relation to long-term survival”. Br. J. Cancer, 2004, 90, 678.

[28] Shahin M.S., Hughes J.H., Sood A.K., Buller R.E.: “The prognostic significance of p53 tumor suppressor gene alterations in ovarian carcinoma”. Cancer, 2000, 89, 2006.

[29] Marks J., Davidoff A., Kerns B., Humphrey P., Pence J., Dodge R. et al.: “Overexpression and mutation of p53 in epithelial ovarian cancer”. Cancer Res., 1991, 51, 2979.

[30] Brunner A.H., Riss P., Heinze G., Meltzow E., Brustmann H.: “Immunoexpression of PAX 8 in endometrial cancer: relation to high-grade carcinoma and p53”. Int. J. Gynecol. Pathol., 2011, 30, 569.

[31] Bowen N.J., Logani S., Dickerson E.B., Kapa L.B., Akhtar M., Benigno B.B. et al.: “Emerging roles for PAX8 in ovarian cancer and endosalpingeal development”. Gynecol. Oncol., 2007, 104, 331.

[32] Tickle T.L., Vachris J.C., Zhang J., Gurlov S., McKinney K.Q., Tait D.L. et al.: “Pax8, a human paired box gene, is over expressed in ovarian cancer”. P. Am. Asso. Cancer Res., 2006, 1, 768.

[33] Astanehe A., Arenillas D., Wasserman W.W., Leung P.C.K., Dunn S.E., Davies B.R. et al.: “Mechanisms underlying p53 regulation of PIK3CA transcription in ovarian surface epithelium and in ovarian cancer”. J. Cell. Sci., 2008, 121, 664.

[34] Fitzpatrick P., Toyn J., Millar J., Johnston L.: “DNA replication is completed in Saccharomyces cerevisiae cells that lack functional Cdc14, a dual-specificity protein phosphatase”. Mol. General. Genetics, MGG, 1998, 258, 437.

[35] Bembenek J., Yu H.: “Regulation of the anaphase-promoting complex by the dual specificity phosphatase human Cdc14a”. J. Biol. Chem., 2001, 276, 48237. Epub 2001 Oct. 11.

[36] Paulsen M.T., Starks A.M., Derheimer F.A., Hanasoge S., Li L., Dixon J.E. et al.: “The p53-targeting human phosphatase hCdc14A interacts with the Cdk1/cyclin B complex and is differentially expressed in human cancers”. Mol. Cancer, 2006, 5, 25.

[37] Li L., Ljungman M., Dixon J.E.: “The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53”. J. Biol. Chem., 2000, 275, 2410.

[38] Kischkel F., Hellbardt S., Behrmann I., Germer M., Pawlita M., Krammer P. et al.: “Cytotoxicity-dependent APO-1 [Fas/CD95]- associated proteins form a death-inducing signaling complex [DISC] with the receptor”. EMBO J., 1995, 14, 5579.

[39] Abrahams V.M., Straszewski S.L., Kamsteeg M., Hanczaruk B., Schwartz P.E., Rutherford T.J. et al.: “Epithelial ovarian cancer cells secrete functional Fas ligand”. Cancer Res., 2003, 63, 5573.

[40] Baldwin R.L., Tran H., Karlan B.Y.: “Primary ovarian cancer cultures are resistant to Fas-mediated apoptosis”. Gynecol. Oncol., 1999, 74, 265.

[41] Munsch D., Watanabe-Fukunaga R., Bourdon J.C., Nagata S., May E., Yonish-Rouach E. et al.: “Human and mouse Fas [APO1/CD95] death receptor genes each contain a p53-responsive element that is activated by p53 mutants unable to induce apoptosis”. J. Biol. Chem., 2000, 275, 3867.

[42] Müller M., Wilder S., Bannasch D., Israeli D., Lehlbach K., LiWeber M. et al.: “p53 activates the CD95 [APO-1/Fas] gene in response to DNA damage by anticancer drugs”. J. Exp. Med., 1998, 188, 2033.

[43] Bennett M., Macdonald K., Chan S.W., Luzio J.P., Simari R., Weissberg P.: “Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis”. Science, 1998, 282, 290.

[44] Chan T.A., Hermeking H., Lengauer C., Kinzler K.W., Vogelstein B.: “14-3-3 is required to prevent mitotic catastrophe after DNA damage”. Nature, 1999, 401, 616.

[45] Kaneuchi M., Sasaki M., Tanaka Y., Shiina H., Verma M., Ebina Y. et al.: “Expression and methylation status of 14-3-3 sigma gene can characterize the different histological features of ovarian cancer”. Biochem. Biophy Res. Comm., 2004, 316, 1156.

[46] Akahira J., Sugihashi Y., Suzuki T., Ito K., Niikura H., Moriya T. et al.: “Decreased expression of 14-3-3 is associated with advanced disease in human epithelial ovarian cancer”. Clin. Cancer Res., 2004, 10, 2687.

[47] Abeysinghe H.R., Li L.Q., Guckert N.L., Reeder J., Wang N.: “THY-1 induction is associated with up-regulation of fibronectin and thrombospondin-1 in human ovarian cancer”. Cancer Gen. Cytog., 2005, 161, 151.

[48] Wei W., Kong B., Yang Q., Qu X.: “Hepatocyte growth factor enhances ovarian cancer cell invasion through downregulation of thrombospondin-1”. Cancer Biol. Ther., 2010, 9, 79.

[49] Alvarez A.A., Axelrod J.R., Whitaker R.S., Isner P.D., Bentley R.C., Dodge R.K. et al.: “Thrombospondin-1 expression in epithelial ovarian carcinoma: association with p53 status, tumor angiogenesis, and survival in platinum-treated patients”. Gynecol. Oncol., 2001, 82, 273.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time