Article Data

  • Views 486
  • Dowloads 135

Original Research

Open Access

Expression analysis of the Beclin-1 in premalignant and malignant tissues of the uterine cervix

  • Z. Protrka1,*,
  • A. Dimitrijevic1
  • N. Jovic1
  • T. Kastratovic1
  • J. Djuric1
  • J. Nedovic2
  • S. Zivanovic3
  • A. Vujic3
  • S.M. Drakulic3
  • N. Djonovic3
  • P. Arsenijevic1

1Department of Obstetrics and Gynecology, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia

2Department of Oncology, Clinical Center Kragujevac, Kragujevac, Serbia

3Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia

DOI: 10.12892/ejgo4028.2018 Vol.39,Issue 6,December 2018 pp.915-920

Published: 15 December 2018

*Corresponding Author(s): Z. Protrka E-mail: protrka.zoran@gmail.com

Abstract

Background: Beclin-1 is the key regulator gene for autophagy and plays a significant role in regulating tumor cell growth and death. Materials and Methods: To assess the expression and clinical significance of autophagic gene Beclin-1 in carcinogenesis of the uterine cervix, the authors performed immunohistochemistry in 138 tissue samples of: low grade cervical squamous intraepithelial lesions (SIL) (n=32), high grade SIL (n=22), portio vaginalis uteri (PVU) carcinoma in situ (n=22), and PVU invasive carcinoma, Stage IA-IIA (n=26) (study group) and 36 samples of normal uterine cervix (control group). Fisher’s exact test (p < 0.05) was used to assess statistical significance. The level of reliability of specificity and sensitivity was determined as a possible screening method for detection of changes in the uterine cervix. Results: There is no important difference in the frequency of overexpression of Beclin-1 between the patients with normal cervix and with low grade SIL, in this study. On the other hand there was a large difference in the frequency of overexpression in patients with high grade SIL (18/22, p = 0.008), PVU carcinoma in situ (20/22, p = 0.008), and PVU invasive carcinoma (18/26, p = 0.033), in relation to the control group. High sensitivity values show diagnostic significance in noticing these types of changes in the uterine cervix. Regarding high predictive values, there is a conclusion that patients with overexpression of Beclin-1 gene probably have premalignant or malignant changes in the uterine cervix. Conclusions: The current achievements show that the evaluation of Beclin-1 expression might provide additional and independent prognostic information to predict the clinical course of uterine cervical cancer. It is confirmed that overexpression of these genes proposes with great certainty that there are premalignant or malignant changes in the uterine cervix.

Keywords

Carcinogenesis; Uterine cervix carcinoma; Beclin-1; Immunohistochemistry.

Cite and Share

Z. Protrka,A. Dimitrijevic,N. Jovic,T. Kastratovic,J. Djuric,J. Nedovic,S. Zivanovic,A. Vujic,S.M. Drakulic,N. Djonovic,P. Arsenijevic. Expression analysis of the Beclin-1 in premalignant and malignant tissues of the uterine cervix. European Journal of Gynaecological Oncology. 2018. 39(6);915-920.

References

[1] Klionsky D.J., Emr S.D.: “Autophagy as a regulated pathway of cellular degradation”. Science, 2000, 290, 1717.

[2] Kundu M., Thompson C.B.: “Autophagy: basic principles and relevance to disease”. Annu. Rev. Pathol., 2008, 3, 427.

[3] Sun P.H., Zhu L.M., Qiao M.M., Zhang Y.P., Jiang S.H., Wu Y.L., Tu S.P.: “The XAF1 tumor suppressor induces autophagic cell death via upregulation of Beclin-1 and inhibition of Akt pathway”. Cancer Lett., 2011, 310, 170.

[4] Liu J., Zhang Y., Qu J., Xu L., Hou K., Zhang J., Qu X., Liu Y.: “β s human gastric cancer cells from undergoing apoptosis”. BMC Cancer, 2011, 11, 183.

[5] Kim H.S., Lee S.H., Do S.I., Lim S.J., Park Y.K., Kim Y.W.: “Clinicopathologic correlation of beclin-1 expression in pancreatic ductal adenocarcinoma”. Pathol. Res. Pract., 2011, 207, 247.

[6] Rasul A., Yu B., Zhong L., Khan M., Yang H., Ma T.: “Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocar cinoma cells via simultaneous induction of apoptosis and autophagy”. Oncol.

Rep., 2012, 27, 1481.

[7] Pan W.R., Chen P.W., Chen Y.L., Hsu H.C., Lin C.C., Chen W.J.: “Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage”. J. Dairy Sci., 2013, 96, 7511.

[8] Park J.M., Huang S., Wu T.T., Sinicrope F.A.: “Association of autophagy regulator beclin 1 with response to neoadjuvant chemoradiation in rectal carcinoma”. Gastroenterology, 2012, 142, 111.

[9] Karantza-Wadsworth V., Patel S., Kravchuk O., Chen G., Mathew R., Jin S., White E.: “Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis:. Genes Dev., 2007, 21, 1621.

[10] Corcelle E.A., Puustinen P., Jäättelä M.: “Apoptosis and autophagy: Targeting autophagy signalling in cancer cells -’trick or treats’?” FEBS J., 2009, 276, 6084.

[11] Livesey K.M., Tang D., Zeh H.J., Lotze M.T.: “Autophagy inhibition in combination cancer treatment”. Curr. Opin. Investig. Drugs, 2009, 10, 1269.

[12] Turcotte S., Giaccia A.J.: ‘Targeting cancer cells through autophagy for anticancer therapy”. Curr. Opin. Cell. Biol., 2010, 22, 246.

[13] Cheong H., Klionsky D.J.: “Biochemical methods to monitor autophagy- related processes in yeast”. Methods Enzymol., 2008, 451,1.

[14] Eskelinen E.L., Saftig P.: “Autophagy: a lysosomal degradation pathway with a central role in health and disease”. Biochim. Biophys. Acta, 2009, 1793, 664.

[15] Kihara A., Kabeya Y., Ohsumi Y., Yoshimori T.: “Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network”. EMBO Rep., 2001, 2, 330.

[16] Sun Q., Fan W., Zhong Q.: “Regulation of Beclin 1 in autophagy”. Autophagy, 2009, 5, 713.

[17] Yue Z., Jin S., Yang C., Levine A.J., Heintz N.: “Beclin 1, an autophagy gene essential for early embryonic development, is a haplosufficient tumor suppressor”. Proc. Natl. Acad. Sci. USA, 2003, 100, 15077.

[18] Qu X., Yu J., Bhagat G., Furuya N., Hibshoosh H., Troxel A., et al.: “Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene”. J. Clin. Invest., 2003, 112, 1809.

[19] Lebovitz C., Bortnik S.B., Gorski S.M.: “Here, there be dragons: charting autophagy-related alterations in human tumors”. Clin. Cancer Res., 2012, 18, 1214.

[20] Shen Y., Li D.D., Wang L.L., Deng R., Zhu X.F.: “Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer”. Autophagy, 2008, 4, 1067.

[21] Ding Z., Shi Y.H., Zhou J., Qiu S.J., Xu Y., Dai Z., et al.: “Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma”. Cancer Res., 2008, 68, 9167.

[22] Shi Y., Ding Z.B., Zhou J., Qiu S.J., Fan J.: “Prognostic significance of Beclin 1-dependent apoptotic activity in hepatocellular carcinoma”. Autophagy, 2009, 5, 380.

[23] Jiang Z., Shao L.J., Wang W.M., Yan X.B., Liu R.Y.: “Decreased expression of Beclin-1 and LC3 in human lung cancer”. Mol. Biol. Rep., 2012, 39, 259.

[24] Won K., Kim G.Y., Kim Y.W., Lim S.J., Kim Y.W.: “Decreased Beclin- 1 expression is correlated with the growth of the primary tumor in patients with squamous cell carcinoma and adenocarcinoma of the lung”. Hum. Pathol., 2012, 43, 62.

[25] Chen Y., Lu Y., Lu C., Zhang L.: “Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1a”. Pathol. Oncol. Res., 2009, 15, 487.

[26] Dong L., Hou Hou Y.J., Tan Y.X., Tang L., Pan Y.F., Wang M., et al.: “Prognostic significance of Beclin 1 in intrahepatic cholangiocellular carcinoma”. Autophagy, 2011, 7, 1222.

[27] Li B., Li C.Y., Peng R.Q., Wu X.J., Wang H.Y., Wan D.S., et al.: “The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers”. Autophagy, 2009, 5, 303.

[28] Ahn C., Jeong E.G., Lee J.W., Kim M.S., Kim S.H., Kim S.S., et al.: “Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers”. APMIS, 2007, 115, 1344.

[29] Dong M., Wan X.B., Yuan Z.Y., Wei L., Fan X.J., Wang T.T., et al.: Low expression of Beclin 1 and elevated expression of HIF-1alpha refine distant metastasis risk and predict poor prognosis of ER-positive, HER2-negative breast cancer”. Med. Oncol., 2013, 30, 355.

[30] Yao Q, Chen J, Lv Y, Wang T, Zhang J, Fan J, et al. The significance of expression of autophagyrelated gene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumour Biol., 2011, 32, 116.

[31] Lin H.X., Qiu H.J., Zeng F., Rao H.L., Yang G.F., Kung H.F., et al.: “Decreased Expression of Beclin 1 correlates closely with Bcl-xL expression and poor prognosis of ovarian carcinoma”. Plos One, 2013, 8, 60516.

[32] Won K.Y., Kim G.Y., Lim S.J., Kim Y.W.: “Decreased Beclin-1 expression is correlated with the growth of the primary tumor in patients with squamous cell carcinoma and adenocarcinoma of the lung”. Hum. Pathol., 2012, 43, 62.

[33] Ding Z.B., Shi Y.H., Zhou J., Qiu S.J., Xu Y., Dai Z., et al.: “Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma”. Cancer Res., 2008, 68, 9167.

[34] Dong L.W., Hou Y.J., Tan Y.X., Tang L., Pan Y.F., Wang M., et al.: “Prognostic significance of Beclin 1 in intrahepatic cholangiocellular carcinoma”. Autophagy, 2011, 7, 1222.

[35] Kim H.S., Lee S.H., Do S.I., Lim S.J., Park Y.K., Kim Y.W.: “Clinicopathologic correlation of beclin-1 expression in pancreatic ductal adenocarcinoma”. Pathol. Res. Pract., 2011, 207, 247.

[36] Wang J., Pan X.L., Ding L.J., Liu D.Y., Da-Peng L., Jin T.: “Aberrant expression of Beclin-1 and LC3 correlates with poor prognosis of human hypopharyngeal squamous cell carcinoma”. Plos One. 2013, 8, 69038.

[37] Huang L., Wang S., Li S.S., Yang X.M.: “Prognostic significance of Beclin-1 expression in laryngeal squamous cell carcinoma”. Pathol. Oncol. Res., 2013, 19, 771.

[38] Chen Y., Lu Y., Lu C., Zhang L.: “Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1alpha expression”. Pathol. Oncol. Res., 2009, 15, 487.

[39] Wu X.Y., Chen J., Cao Q.H., Dong M., Lin Q., Fan X.J., et al.: “Beclin 1 activation enhances chemosensitivity and predicts a favorable outcome for primary duodenal adenocarcinoma”. Tumour Biol., 2013, 34, 713.

[40] Yu M., Gou W.F., Zhao S., Xiao L.J., Mao X.Y., Xing Y.N., et al.: “Beclin 1 expression is an independent prognostic factor for gastric carcinomas”. Tumour Biol., 2013, 34, 1071.

[41] Huang J.J., Zhu Y.J., Lin T.Y., Jiang W.Q., Huang H.Q., Li Z.M.: “Beclin 1 expression predicts favorable clinical outcome in patients with diffuse large B-cell lymphoma treated with R-CHOP”. Hum. Pathol., 2011, 42, 1459

[42] Nicotra G., Mercalli F., Peracchio C., Castino R., Follo C., Valente G., et al.: “Autophagy-active beclin 1 correlates with favourable clinical outcome in non-Hodgkin lymphomas”. Modern Pathol., 2010, 23, 937.

[43] Huang J.J., Li H.R., Huang Y., Jiang W.Q., Xu R.H., Huang H.Q., et al.: “Beclin 1 expression: a predictor of prognosis in patients with extranodal natural killer T-cell lymphoma, nasal type”. Autophagy, 2010, 6, 777.

[44] Wan X.B., Fan X.J., Chen M.Y., Xiang J., Huang P.Y., Guo L., et al.: “Elevated Beclin 1 expression is correlated with HIF-1alpha in predicting poor prognosis of nasopharyngeal carcinoma”. Autophagy, 2010, 6, 395.

[45] Giatromanolaki A., Koukourakis M.I., Koutsopoulos A., Chloropoulou P., Liberis V., Sivridis E.: “High Beclin 1 expression

defines a poor prognosis in endometrial adenocarcinomas”. Gynecol. Oncol., 2011, 123, 147.

[46] Han Y., Xue X.F., Shen H.G., Guo X.B., Wang X., Yuan B., et al.: “Prognostic significance of Beclin-1 expression in colorectal cancer: a meta-analysis”. Asian Pac. J. Cancer Prevent.,2014, 15, 4583.

[47] Sakakura K., Takahashi H., Kaira K., Toyoda M., Oyama T., Chikamatsu K.: “Immunological significance of the accumulation of autophagy components in oral squamous cell carcinoma”. Cancer Sci., 2015, 106, 1.

[48] Tang J.Y., Fang Y.Y., Hsi E., Huang Y.C., Hsu N.C.H., Yang W.C., et al.: “Immunopositivity of Beclin-1 and ATG5 as indicators of survival and disease recurrence in oral squamous cell carcinoma”. Anticancer Res., 2013, 3, 5611.

[49] Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., et al.: “Autophagy in malignant transformation and cancer progression”. EMBO J., 2015, 34, 856.

[50] Guo J.Y., Xia B., White E.: “Autophagy-mediated tumor promotion”. Cell, 2013, 155, 1216.

[51] Kenific C.M., Debnath J.: “Cellular and metabolic functions for autophagy in cancer cells”. Trends Cell Biol., 2015, 25, 37.

[52] Perez E., Das G., Bergmann A., Baehrecke E.H.: “Autophagy regulates tissue overgrowth in a contextdependent manner”. Oncogene, 2015, 34, 3369.

[53] Rosenfeldt M.T., O’Prey J., Morton J.P., Nixon C., MacKay G., Mrowinska A., et al.: “p53 status determines the role of autophagy in pancreatic tumour development”. Nature, 2013, 504, 296.

[54] Kihara A., Kabeya Y., Ohsumi Y., Yoshimori T.: “Beclin–phosphatidylinositol 3-kinase complex functions at the trans-Golgi network”. EMBO Rep., 2001, 2, 330.

[55] Buraschi S., Neill T., Goyal A., Poluzzi C., Smythies J., Owens R.T., et al.: “Decorin causes autophagy in endothelial cells via Peg3”. Proc. Nat. Ac. Sci., 2013, 110, 2582.

[56] Valentin-Vega Y.A., MacLean K.H., Tait-Mulder J., Milasta S., Steeves M., Dorsey F.C., et al.: “Mitochondrial dysfunction in ataxia-telangiectasia”. Blood, 2012, 119, 1490.

[57] Parkhitko A., Myachina F., Morrison T.A., Hindi K.M., Auricchio N., Karbowniczek M., et al.: “Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent”. Proc. Nat. Ac. Sci., 2011, 108, 12455.

[58] Dorsam R.T., Gutkind J.S.: “G-protein-coupled receptors and cancer”. Nat. Rev. Canc., 2007, 7, 79.

[59] He C., Wei Y., Sun K., Li B., Dong X., Zou Z., et al.: “Beclin 2 functions in autophagy, degradation of g protein-coupled receptors, and metabolism”. Cell, 2013, 154, 1085.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top