Article Data

  • Views 556
  • Dowloads 121

Original Research

Open Access

CYP1A1 polymorphisms and cervical cancer risk: a meta-analysis

  • Hui Chen1,†
  • Ke Yi1,†
  • Liang Zhi Xu1
  • Jie Chen1,*,

1Department of Gynecology and Obstetrics, The West China Second University Hospital, Sichuan University, Chengdu (China)

DOI: 10.12892/ejgo4052.2018 Vol.39,Issue 1,February 2018 pp.84-91

Published: 10 February 2018

*Corresponding Author(s): Jie Chen E-mail: cjzb1@sina.com

† These authors contributed equally.

Abstract

Objective: Cytochrome P4501A1(CYP1A1) may contribute to the development of cervical cancer through affecting the metabolism of estrogen and carcinogens. The current data of connection between the CYP1A1 polymorphisms and cervical cancer risk is not thoroughly acceptable. We conduct a meta-analysis to evaluate whether there is certain correlation between polymorphisms of CYP1A1 and cervical cancer. Materials and Methods: Some eligible case-control studies are expected to be identified from Embase, PubMed and other databases. Pooled odds ratios (ORs) and 95% CIs are calculated in a fixed-effects or random effects model as appropriate. Results: There were 13 case-control studies, including 2374 cases and 2436 controls.. Overall, the pooled results showed that there was a strong connection between cervical cancer and CYP1A1 MspI polymorphism in all models: allele contrast(C vs. T) , OR=1.43,95% CI = 1.11– 1.83; homozygote comparison(CC vs. TT), OR=2.09, 95% CI=1.26 3.48; heterozygote comparison(CT vs. TT), OR=1.48, 95% CI=1.12–1.95; dominant model (CC+CT vs. TT), OR=1.53, 95% CI=1.11-2.10; recessive model(CC vs. CT+TT), OR=1.64, 95% CI=1.13-2.39). There were also strong associations between cervical cancer and CYP1A1 Ile462Val polymorphism in all models except for the recessive model. Conclusion: Present meta-analyses reveal that both MspI and Ile462Val polymorphisms may be correlated with cervical cancer.

Keywords

Cytochrome P4501A1(CYP1A1), cervical cancer, polymorphism, meta-analysis.

Cite and Share

Hui Chen,Ke Yi,Liang Zhi Xu,Jie Chen. CYP1A1 polymorphisms and cervical cancer risk: a meta-analysis. European Journal of Gynaecological Oncology. 2018. 39(1);84-91.

References

[1] Echelman D., Feldman S.: “Management of cervical precancers: a global perspective”. Hematol. Oncol. Clin. North Am., 2012, 26, 31.

[2] Munoz N., Bosch F.X., de Sanjose S., Herrero R., Castellsague X., Shah K.V., et al.: “Epidemiologic classification of human papillomavirus types associated with cervical cancer”. N. Engl. J. Med., 2003, 348, 518.

[3] Walboomers J.M., Jacobs M.V., Manos M.M., Bosch F.X., Kummer J.A., Shah K.V., et al.: “Human papillomavirus is a necessary cause of invasive cervical cancer worldwide”. J. Pathol., 1999, 189, 12.

[4] Kjellberg L., Hallmans G., Ahren A.M., Johansson R., Bergman F., Wadell G., et al.: “Smoking, diet, pregnancy and oral contraceptive use as risk factors for cervical intra-epithelial neoplasia in relation to human papillomavirus infection”. Br. J. Cancer, 2000, 82, 1332.

[5] Josefsson A.M., Magnusson P.K., Ylitalo N., Sorensen P., Qwarforth- Tubbin P., Andersen P.K., et al.: “Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: a nested case -control study”. Lancet, 2000, 355, 2189.

[6] Doll R.: “Uncovering the effects of smoking: historical perspective”. Stat. Methods Med. Res., 1998, 7, 87.

[7] Hecht S.S.: “DNA adduct formation from tobacco-specific N-nitrosamines”. Mutat. Res., 1999, 424, 127.

[8] McManus M.E., Burgess W.M., Veronese M.E., Huggett A., Quattrochi L.C., Tukey R.H.: “Metabolism of 2-acetylaminofluorene and benzo(a)pyrene and activation of food-derived heterocyclic amine mutagens by human cytochromes P-450”. Cancer Res., 1990, 50, 3367.

[9] Spink D.C., Eugster H.P., Lincoln D.W. 2nd, Schuetz J.D., Schuetz E.G., Johnson J.A., et al.: “17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1A1: a comparison of the activities induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in MCF-7 cells with those from heterologous expression of the cDNA”. Arch. Biochem. Biophys., 1992, 293, 342.

[10] Crofts F., Taioli E., Trachman J., Cosma G.N., Currie D., Toniolo P., et al.: “Functional significance of different human CYP1A1 genotypes”. Carcinogenesis, 1994, 15, 2961.

[11] Hayashi S.I., Watanabe J., Nakachi K., Kawajiri K.: “PCR detection of an A/G polymorphism within exon 7 of the CYP1A1 gene”. Nucleic Acids Res., 1991, 19, 4797.

[12] Roszak A., Lianeri M., Sowinska A., Jagodzinski P.P.: “CYP1A1 Ile462Val polymorphism as a risk factor in cervical cancer development in the Polish population”. Mol. Diagn. Ther., 2014, 18, 445.

[13] Abbas M., Srivastava K., Imran M., Banerjee M.: “Association of CYP1A1 gene variants rs4646903 (T>C) and rs1048943 (A>G) with cervical cancer in a North Indian population”. Eur. J. Obstet. Gynecol. Reprod. Biol., 2014, 176, 68.

[14] von Keyserling H., Bergmann T., Schuetz M., Schiller U., Stanke J., Hoffmann C., et al.: “Analysis of 4 single-nucleotide polymorphisms in relation to cervical dysplasia and cancer development using a high-throughput ligation-detection reaction procedure”. Int. J. Gynecol. Cancer, 2011, 21, 1664.

[15] Shi Y.R., Geng J., Cheng L.Q., Wang H., Zhang Y.: “Association of cytochrome p450 1a1 gene polymorphisms with cervical cancer”. Fudan Univ. J. Med. Sci., 2011, 38, 428. [Article in Chinese]

[16] Ding F.Y., Ma G.F., Song X.H., Shi W.H., Lan J.Y., Yu H.Y.: “Relationship between cyp1a1 gene polymorphism and genetic susceptibility of cervical carcinoma”. Jiangsu Med. J., 2011, 37, 2562. [Article in Chinese]

[17] Gutman G., Morad T., Peleg B., Peretz C., Bar-Am A., Safra T., et al.: “CYP1A1 and CYP2D6 gene polymorphisms in Israeli Jewish women with cervical cancer”. Int. J. Gynecol.Cancer, 2009, 19, 1300.

[18] Mantel N., Haenszel W.: “Statistical aspects of the analysis of data from retrospective studies of disease”. J. Natl. Cancer Inst., 1959, 22, 719.

[19] DerSimonian R., Laird N.: “Meta-analysis in clinical trials”. Control Clin. Trials.,1986, 7, 177.

[20] Begg C.B., Mazumdar M.: “Operating characteristics of a rank correlation test for publication bias”. Biometrics, 1994, 50, 1088.

[21] Egger M., Davey Smith G., Schneider M., Minder C.: “Bias in metaanalysis detected by a simple, graphical test”. BMJ (Clinical research ed)., 1997, 315, 629.

[22] Xia L., Gao J., Liu Y., Wu K.: “Significant association between CYP1A1 T3801C polymorphism and cervical neoplasia risk: a systematic review and meta-analysis”. Tumour Biol., 2013, 34, 223.

[23] Wu B., Liu K., Huang H., Yuan J., Yuan W., Wang S., et al.: “MspI and Ile462Val polymorphisms in CYP1A1 and overall cancer risk: a meta-analysis”. PLoS One, 2013, 8, e85166.

[24] Sergentanis T.N., Economopoulos K.P., Choussein S., Vlahos N.F.: “Cytochrome P450 1A1 (CYP1A1) gene polymorphisms and cervical cancer risk: a meta-analysis”. Mol. Biol. Rep., 2012, 39, 6647.

[25] Agorastos T., Papadopoulos N., Lambropoulos A.F., Chrisafi S., Mikos T., Goulis D.G., et al.: “Glutathione-S-transferase M1 and T1 and cytochrome P1A1 genetic polymorphisms and susceptibility to cervical intraepithelial neoplasia in Greek women”. Eur. J. Cancer Prev., 2007, 16, 498.

[26] Goodman M.T., McDuffie K., Hernandez B., Bertram C.C., Wilkens L.R., Guo C., et al.: “CYP1A1, GSTM1, and GSTT1 polymorphisms and the risk of cervical squamous intraepithelial lesions in a multiethnic population”. Gynecol. Oncol., 2001, 81, 263.

[27] Nishino K., Sekine M., Kodama S., Sudo N., Aoki Y., Seki N., et al.: “Cigarette smoking and glutathione S-transferase M1 polymorphism associated with risk for uterine cervical cancer”. J. Obstet. Gynaecol. Res., 2008, 34, 994.

[28] Juarez-Cedillo T., Vallejo M., Fragoso J.M., Hernandez-Hernandez D.M., Rodriguez-Perez J.M., Sanchez-Garcia S., et al.: “The risk of developing cervical cancer in Mexican women is associated to CYP1A1 MspI polymorphism”. Eur. J. Cancer, 2007, 43, 1590.

[29] Zhang S.H., Kong A.R.: “Association between polymorphisms of CYP1A1 gene and cervical squamous carcinoma”. Chinese Journal of Medical Genetics, 2006, 26, 374. [Article in Chinese]

[30] Taskiran C., Aktas D., Yigit-Celik N., Alikasifoglu M., Yuce K., Tuncbilek E., et al.: “CYP1A1 gene polymorphism as a risk factor for cervical intraepithelial neoplasia and invasive cervical cancer”. Gynecol. Oncol., 2006, 101, 503.

[31] Joseph T., Chacko P., Wesley R., Jayaprakash P.G., James FV., Pillai M.R.: “Germline genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes in Indian cervical cancer: associations with tumor progression, age and human papillomavirus infection”. Gynecol. Oncol., 2006, 101, 411.

[32] Kim J.W., Lee C.G., Park Y.G., Kim K.S., Kim I.K., Sohn Y.W., et al.: “Combined analysis of germline polymorphisms of p53, GSTM1, GSTT1, CYP1A1, and CYP2E1: relation to the incidence rate of cervical carcinoma”. Cancer, 2000, 88, 2082.

[33] Sugawara T., Nomura E., Sagawa T., Sakuragi N., Fujimoto S.: “CYP1A1 polymorphism and risk of gynecological malignancy in Japan”. Int. J. Gynecol. Cancer, 2003, 13, 785.

[34] Stroup D.F., Berlin J.A., Morton S.C., Olkin I., Williamson G.D., Rennie D., et al.: “Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group”. JAMA, 2000, 283, 2008.

[35] Salanti G., Amountza G., Ntzani E.E., Ioannidis J.P.: “Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power”. Eur. J. Hum. Genet., 2005, 13, 40.

[36] Hosking L., Lumsden S., Lewis K., Yeo A., McCarthy L., Bansal A., et al.: “Detection of genotyping errors by Hardy-Weinberg equilibrium testing”. Eur. J. Hum. Genet., 2004, 12, 395.

[37] Trikalinos T.A., Salanti G., Khoury M.J., Ioannidis J.P.: “Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations”. Am. J. Epidemiol., 2006, 163, 300.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top