Article Data

  • Views 542
  • Dowloads 115

Original Research

Open Access

MiR-182-5p promotes proliferation and invasion by regulating Smad4 in vulvar squamous cell cancer

  • Xiuhua Yang1
  • Xin Wu2,*,

11Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, China

2Department of Gynaecology, The First Hospital of China Medical University, Shenyang, Liaoning, China

DOI: 10.12892/ejgo4177.2018 Vol.39,Issue 4,August 2018 pp.604-608

Published: 10 August 2018

*Corresponding Author(s): Xin Wu E-mail: wuxin@cmu.edu.cn

Abstract

The purpose of this study was to investigate the potential mechanism of miR-182-5p and Smad4 in vulvar squamous cell carcinoma (VSCC). A431 cells were transfected with miR-182-5p mimics, a small interfering RNA targeting Smad4 (siR-Smad4) and their negative controls. The authors performed gene functional experiments in A431 cells. The protein levels of MMP-2, MMP-9, E-cadherin, N-cadherin, and vimentin were detected after transfection miR-182-5p mimics. The expression levels of Smad4, p21, plasminogen activator inhibitor-1 (PAI-1), Bax, and Bim were detected after transfection miR-182-5p mimics. In A431 cells, up-expression of miR-182- 5p advanced the cell proliferation, migration, invasion, G1-S phase transition, and down-regulated Smad4; miR-182-5p also increased the expressions of MMP-2 and MMP-9 and influenced alterations in epithelial-mesenchymal transition (EMT) and suppressed downstream target genes of Smad4. The down-regulation of Smad4 by siRNA simulated the roles of miR-182-5p. The authors conclude that miR-182-5p plays an oncogenic role by its target gene Smad4 in VSCC.

Keywords

Vulvar squamous cell carcinoma; miR-182-5p; Smad4; Epithelial-mesenchymal transition.

Cite and Share

Xiuhua Yang,Xin Wu. MiR-182-5p promotes proliferation and invasion by regulating Smad4 in vulvar squamous cell cancer. European Journal of Gynaecological Oncology. 2018. 39(4);604-608.

References

[1] Barlow E.L., Kang Y.J., Hacker N.F.: “Changing trends in vulvar cancer incidence and mortality rates in Australia since 1982”. Int. J. Gynecol. Cancer, 2015, 25, 1683.

[2] Yang X.H., Wu X.: “miRNA expression profile of vulvar squamous cell carcinoma and identification of the oncogenic role of miR-182- 5p”. Oncol. Rep., 2016, 35, 398.

[3] Hirata H., Ueno K., Shahryari V., Tanaka Y., Tabatabai Z.L., Hinoda Y., et al.: “Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer”. PLoS One, 2012, 7, e51056.

[4] de Melo Maia B., Lavorato-Rocha A.M., Rodrigues L.S., Coutinho- Camillo C.M., Baiocchi G., Stiepcich M.M., et al.: “microRNA portraits in human vulvar carcinoma”. Cancer Prev, Res, (Phila,), 2013, 6, 1231.

[5] de Melo Maia B., Ling H., Monroig P., Ciccone M., Soares F.A., Calin G.A., et al.: “Design of a miRNA sponge for the miR- 17 miRNA family as a therapeutic strategy against vulvar carcinoma”. Mol. Cell Probes, 2015, 29, 420.

[6] Chiang C.H., Hou M.F., Hung W.C.: “Up-regulation of miR-182 by betacatenin in breast cancer increases tumourigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK”. Biochim. Biophys. Acta, 2013, 1830, 3067.

[7] Hirata H., Ueno K., Shahryari V., Deng G., Tanaka Y., Tabatabai Z.L., et al.: “MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer”. PLoS One, 2013, 8, e55502.

[8] Wang J., Li J., Shen J., Wang C., Yang L., Zhang X.: “MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma”. BMC Cancer, 2012, 12, 227.

[9] Tang T., Wong H.K., Gu W., Yu M.Y., To K.F., Wang C.C., et al.: “MicroRNA-182 plays an onco-miRNA role in cervical cancer”. Gynecol. Oncol., 2013, 129, 199.

[10] Cekaite L., Rantala J.K., Bruun J., Guriby M., Agesen T.H., Danielsen S.A., et al.: “MiR-9, -31, and -182 deregulation promote proliferation and tumour cell survival in colon cancer”. Neoplasia, 2012, 14, 868.

[11] Song L., Liu L., Wu Z., Li Y., Ying Z., Lin C., et al.: “TGF-beta induces miR-182 to sustain NF-kB activation in glioma subsets”. J. Clin. Invest., 2012, 122, 3563.

[12] Wang L., Zhu M.J., Ren A.M., Wu H.F., Han W.M., Tan R.Y., et al.: “A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer”. PLoS One, 2014, 9, e96472.

[13] Yan D., Dong X.D., Chen X., Yao S., Wang L., Wang J., et al.: “Role of microRNA-182 in posterior uveal melanoma: regulation of tumour development through MITF, BCL2 and cyclin D2”. PLoS One, 2012, 7, e40967.

[14] Xu X., Wu J., Li S., Hu Z., Xu X., Zhu Y., et al.: “Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway”. Mol. Cancer, 2014, 13, 109.

[15] Kong W.Q., Bai R., Liu T., Cai C.L., Liu M., Li X., et al.: “MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma”. FEBS J., 2012, 279, 1252.

[16] Zanvettor PH, Filho DF, Soares FA, Neves AR, Palmeira LO.: “Study of biomolecular and clinical prognostic factors in patients with cancer of the vulva undergoing surgical treatment”. Int. J. Gynecol. Cancer, 2014, 24, 766.

[17] Chen Y., Xiao Y., Ge W., Zhou K., Wen J., Yan W., et al.: “MiR-200b inhibits TGF-beta1-induced epithelial–mesenchymal transition and promotes growth of intestinal epithelial cells”. Cell Death Dis., 2013, 4, e541.

[18] Paterson E.L., Kazenwadel J., Bert A.G., Khew-Goodall Y., Ruszkiewicz A., Goodall G.J.: “Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression”. Neoplasia, 2013, 15, 180.

[19] Martello G., Rosato A., Ferrari F., Manfrin A., Cordenonsi M., Dupont S., et al.: “A microRNA targeting dicer for metastasis control”. Cell, 2010, 141, 1195.

[20] Hunt K.K., Fleming J.B., Abramian A., Zhang L., Evans D.B., Chiao P.J.: “Overexpression of the tumour suppressor gene Smad4/DPC4 induces p21waf1 expression and growth inhibition in human carcinoma cells”. Cancer Res., 1998, 5, 5656.

[21] Boye A., Wu C., Jiang Y., Wang J., Wu J., Yang X., et al.: “Compound Astragalus and Salvia miltiorrhiza extracts modulate MAPKregulated TGF-β/Smad signaling in hepatocellular carcinoma by multi-target mechanism”. J. Ethnopharmacol., 2015, 169, 219.

[22] Janeesh P.A., Abraham.: “Robinin modulates doxorubicin-induced cardiac apoptosis by TGF-β1 signaling pathway in Sprague Dawley rats”. Biomed. Pharmacother., 2014, 68, 989.

[23] Tong D., Qu H., Meng X., Jiang Y., Liu D., Ye S., et al.: “S-allylmercaptocysteine promotes MAPK inhibitor-induced apoptosis by activating the TGF-β signaling pathway in cancer cells”. Oncology Reports, 2014, 32, 1124.

[24] Freeman T.J., Smith J.J., Chen X., Washington M.K., Roland J.T., Means A.L., et al.: “Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of beta-catenin”. Gastroenterology, 2012, 142, 562.

[25] Yang G., Yang X.: “Smad4-mediated TGF-β signaling in tumourigenesis”. Int. J. Biol. Sci., 2010, 6, 1.

[26] Cheng H., Fertig E.J., Ozawa H., Hatakeyama H., Howard J.D., Perez J., et al.: “Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma”. Cancer Biol. Ther., 2015, 16, 1252.

[27] Hahn S.A., Schutte M., Hoque A.T., Moskaluk C.A., da Costa L.T., Rozenblum E., et al.: “DPC4, a candidate tumour suppressor gene at human chromosome 18q21.1”. Science. 1996, 271, 350.

[28] Cancer Genome Atlas Network: “Comprehensive genomic characterization of head and neck squamous cell carcinomas”. Nature, 2015, 517, 576.

[29] Liu Y., Sheng J., Dai D., Liu T., Qi F.: “Smad4 acts as tumour suppressor by antagonizing lymphangiogenesis in colorectal cancer”. Pathol. Res. Pract., 2015, 211, 286.

[30] Cho S.Y., Ha S.Y., Huang S.M., Kim J.H., Kang M.S., Yoo H.Y., et al.: “The prognostic significance of Smad3, Smad4, Smad3 phosphoisoform expression in esophageal squamous cell carcinoma”. Med. Oncol., 2014, 31, 236.

[31] Bian C., Li Z., Xu Y., Wang J., Xu L., Shen H.: “Clinical outcome and expression of mu-tant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study”. World J. Surg. Oncol., 2015, 13, 128.

[32] Liu N.N., Xi Y., Callaghan M.U., Fribley A., Moore-Smith L., Zimmerman J.W., et al.: “SMAD4 is a potential prognostic marker in human breast carcinomas”. Tumour Biol., 2014, 35, 641.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top