Article Data

  • Views 543
  • Dowloads 159

Reviews

Open Access

The role of erythropoietin and erythropoietin receptor expression in breast cancer

  • M.P. Budzik1,*,
  • A.M. Badowska-Kozakiewicz1

1Department of Biophysics and Human Physiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland

DOI: 10.12892/ejgo4266.2019 Vol.40,Issue 1,February 2019 pp.7-15

Accepted: 30 May 2017

Published: 10 February 2019

*Corresponding Author(s): M.P. Budzik E-mail: michalbudzik.5@gmail.com

Abstract

Erythropoietin (EPO) plays a number of important functions in the body. Contrary to original beliefs, its activity is not limited to exerting effects on cells along the erythropoietic pathway. Newly published results continue to provide information on novel functions of the protein in other types of tissues, as well as on the important roles played by EPO in pathological processes. With no doubt, EPO has a significant impact on the biology of breast cancer cells by affecting cells’ proliferation, apoptosis, resistance to chemotherapy, as well as expression of various types of receptors. EPO exerts its direct action on breast cancer stem-like cells by activation of specific signaling pathways responsible for protection of the tumor from chemotherapy and accelerating disease progression. EPO could inhibit chemotherapeutic drug-induced apoptosis and cytotoxicity. Its correlation with tissue hypoxia may play a significant role in the therapeutic resistance of hypoxic tumors. In recent years, the role of endogenous EPO in regulation of carcinogenesis was also noted. Exogenous EPO, in the form of rhEPO, had been introduced with best intention to treat patients with cancer-related anemia in the course of breast cancer. While it decreases the transfusion requirements and improves the quality of life of cancer patients, randomized trials have demonstrated that rhEPO administration is associated with shorter progression-free and overall survival. Observations allow also to say that EPO antagonizes treatment with the anti-HER2 antibody trastuzumab by activating EpoR/JAK2 downstream effectors, effectively bypassing HER2 signaling. Although increasing amount of information is available regarding the role of EPO and EpoR in breast cancer, elucidation of the activity and involvement of these proteins in complex processes occurring within the cancer cells requires extensive research. Every set of results being published answers some of the questions while instead raise new ones.

Keywords

Breast neoplasms; Erythropoietin; Hypoxia

Cite and Share

M.P. Budzik,A.M. Badowska-Kozakiewicz. The role of erythropoietin and erythropoietin receptor expression in breast cancer. European Journal of Gynaecological Oncology. 2019. 40(1);7-15.

References

[1] Danska A., Sodowski K., Przybylski M., Spaczyński M.: “Erythropoietin in gynecological oncology”. Contemporary Oncology, 2002, 6, 98.

[2] Snopek G., Popielarz-Grygalewicz A., Dąbrowski M.: “Erythropoietin: new perspectives in treating cardiac insufficiency”? PHMD, 2005, 59, 358.

[3] Arcasoy M.O., Amin K., Vollmer R.T., Jiang X., Demark-Wahnefried W., Haroon Z.A.: “Erythropoietin and erythropoietin receptor expression in human prostate cancer”. Modern Pathol., 2005, 18, 421.

[4] Kaushansky K.: “Lineage-specific hematopoietic growth factors”. N. Engl. J. Med., 2006, 354, 2034.

[5] Winczura P., Jassem J.: “Recombinant human erythropoietin in treatment of the cancer patients with anemia: hopes and threats”. Oncol. Clin. Pract., 2007, 3, 198-204.

[6] Duchnowska R., Szczylik C.: “Non-hematological role of erythropoietin”. Oncol. Pol., 2003, 6, 109.

[7] Lai S.Y., Grandis J.R.: “Understanding the presence and function of erythropoietin receptors on cancer cells”. J. Clin. Oncol., 2006, 24, 4675.

[8] Pajonk F., Weil A., Sommer A., Suwinki R., Henke M.: “The erythropoietin-receptor pathway modulates survival of cancer cells”. Oncogene, 2004, 23, 8987.

[9] Acs G., Zhang P.J., Rebbeck T.R., Acs P., Verma A.: “Immunohistochemical expression of erythropoietin receptor in breast carcinoma”. Cancer, 2002, 95, 969.

[10] Mercadante S., Gebbia V., Marrazzo A., Filosto S.: “Anaemia in cancer: pathophysiology and treatment”. Cancer. Treat. Rev., 2000, 26, 303.

[11] Varlotto J., Stevenson M.A.: “Anemia, tumor hypoxemia, and the cancer patient”. Int. J. Radiat. Oncol. Biol. Phys., 2005, 63, 25.

[12] Leyland-Jones B., Semiglazov V., Pawlicki M., Pienkowski T., Tjulandin S., Manikhas G., et al.: “Maintaining normal hemoglobin lev- els with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy: a survival study”. J. Clin. Oncol., 2005, 23, 5960.

[13] Henke M., Laszig R., Rübe C., Schäfer U., Haase K.D., Schilcher B., et al.: “Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy, randomised, double-blind, placebo-controlled trial”. Lancet, 2003, 362, 1255.

[14] Rizzo J.D., Brouwers M., Hurley P., Seidenfeld J., Somerfield M.R., Temin S.: “American Society of Clinical Oncology/American Society of Hematology clinical practice guidelines update on the use of epoetin and darbepoetin in adult patients with cancer”. J. Clin. Oncol., 2010, 28, 4996.

[15] Larsson A.M., Jirström K., Fredlund E., Nilsson S., Rydén L., Landberg G., Påhlman S.: “Erythropoietin receptor expression and correlation to tamoxifen response and prognosis in breast cancer”. Clin. Cancer Res., 2009, 15, 5552.

[16] Kokhaei P., Abdalla A.O., Hansson L., Mikaelsson E., Kubbies M., Haselbeck A., et al.: “Expression of erythropoietin receptor and in vitro functional effects of epoetins in B-cell malignancies”. Clin. Cancer Res., 2007, 13, 3536.

[17] Aapro M., Leonard R.C., Barnadas A., Marangolo M., Untch M., Malamos N., et al.: “Effects of once-weekly epoetin beta on survival in patients with metastatic breast cancer receiving anthracycline- and/or taxane-based chemotherapy. Results of the Breast Cancer Anemia and the Value of Erythropoietin (BRAVE) Study”. J. Clin. Oncol., 2008, 26, 592.

[18] Volgger B., Kurz K., Zöschg K., Theurl I., Ciresa-König A., Marth C., Weiss G.: “Importance of erythropoetin receptor expression in tumour for the clinical course of breast cancer”. Anticancer Res., 2010, 30, 3721.

[19] Sinclair A.M., Rogers N., Busse L., Archibeque I., Brown W., Kassner P.D., et al.: “Erythropoietin receptor transcription is neither elevated nor predictive of surface expression in human tumour cells”. Br. J.Cancer, 2008, 98, 1059.

[20] Elliott S., Busse L., Bass M.B., Lu H., Sarosi I., Sinclair A.M., et al.: “Anti-Epo receptor antibodies do not predict Epo receptor expression”. Blood, 2006, 107, 1892.

[21] Kirkeby A., van B.J., Nielsen J., Leist M., Helboe L.: “Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor”. J. Neurosci. Methods, 2007, 164, 50.

[22] Laugsch M., Metzen E., Svensson T., Depping R., Jelkmann W.: “Lack of functional erythropoietin receptors of cancer cell lines”. Int. J. Cancer, 2008, 122, 1005.

[23] Hershman D.L., Buono D.L., Malin J., McBride R., Tsai W.Y., Neugut AI.: “Patterns of use and risks associated with erythropoiesis- stimulating agents among Medicare patients with cancer”. J. Natl. Cancer Inst., 2009, 101, 1633.

[24] Todaro M., Turdo A., Bartucci M., Iovino F., Dattilo R., Biffoni M., et al.: “Erythropoietin activates cell survival pathways in breast cancer stem–like cells to protect them from chemotherapy”. Cancer Res., 2013, 73(21), 6393-6400, doi: 10.1158/0008-5472.CAN-13-0248.

[25] Phillips T.M., Kim K., Vlashi E., McBride W.H., Pajonk F.: “Effects of recombinant erythropoietin on breast cancer–initiating cells”. Neoplasia, 2007, 9(12), 1122-1129.

[26] Phillips T.M., McBride W.H., Pajonk F.: “The response of CD24 (_/low)/CD44+ breast cancer – initiating cells to radiation”. J. Natl. Cancer Inst., 2006, 98, 1777.

[27] Acs G., Zhang P.J., McGrath C.M., Acs P., McBroom J., Mohyeldin A., et al.: “Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression”. Am. J. Pathol., 2003, 162, 1789.

[28] Sawa S., Kamimura D., Jin G.H., Morikawa H., Kamon H., Nishi- hara M., et al.: “Autoimmune arthritis associated with mutated in- terleukin (IL)-6 receptor gp130 is driven by STAT3/IL-7-dependent homeostatic proliferation of CD4+ T cells”. J. Exp. Med., 2006, 203, 1459.

[29] Murray P.J.: “STAT3-mediated anti-inflammatory signaling. Biochem. Soc. Trans., 2006, 34, 1028.

[30] Wincewicz A., Koda M., Sulkowska M., Kanczuga-Koda L., Wincewicz D., Sulkowski S.: “STAT3 and hypoxia induced proteins– HIF-1alpha, EPO and EPOR in relation with Bax and Bcl-xL in nodal metastases of ductal breast cancers”. Folia Histochem. Cytobiol., 2009, 47, 425.

[31] Wincewicz A., Sulkowska M., Koda M., Leśniewicz T., Kanczuga- Koda L., Sulkowski S.: „STAT3, HIF-1alpha, EPO and EPOR - signaling proteins in human primary ductal breast cancers”. Folia Histochem. Cytobiol., 2007, 45, 81.

[32] Dolznig H., Habermann B., Stangl K., Deiner E.M., Moriggl R., Beug H., Müllner E.W.: “Apoptosis protection by the Epo target BclX(L) allows factor-independent differentiation of primary erythroblasts”. Curr. Biol., 2002, 12, 1076.

[33] Kumral A., Genc S., Ozer E., Yilmaz O., Gokmen N., Koroglu T.F., et al.: “Erythropoietin downregulates bax and DP5 proapoptotic gene expression in neonatal hypoxic-ischemic brain injury”. Biol. Neonate, 2006, 89, 205.

[34] Schindl M., Schoppmann S.F., Samonigg H., Hausmaninger H., Kwasny W., Gnant M., et al.: “Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer”. Clin. Cancer Res., 2002, 8, 1831.

[35] Dales J.P., Garcia S., Meunier-Carpentier S., Andrac-Meyer L., Haddad O., Lavaut M.N., et al.: “Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients”. Int. J. Cancer, 2005, 116, 734.

[36] Kronblad A., Jirstrom K., Ryden L., Nordenskjold B., Landberg G.: “Hypoxia inducible factor-1alpha is a prognostic marker in premenopausal patients with intermediate to highly differentiated breast cancer but not a predictive marker for tamoxifen response”. Int. J. Cancer, 2006, 118, 2609.

[37] Xu Q., Briggs J., Park S., Niu G., Kortylewski M., Zhang S., et al.: “Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways”. Oncogene, 2005, 24, 5552.

[38] Acs G., Acs P., Beckwith S.M., Pitts R.L., Clements E., Wong K., Verma A.: “Erythropoietin and erythropoietin receptor expression in human cancer”. Cancer Res., 2001, 61, 3561.

[39] Acs G., Chen M., Xu X., Acs P., Verma A., Koch C.J.: “Autocrine erythropoietin signaling inhibits hypoxia-induced apoptosis in human breast carcinoma cells”. Cancer Lett., 2004, 214, 243.

[40] Gritsko T., Williams A., Turkson J., Kaneko S., Bowman T., Huang M., et al.: “Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells”. Clin. Cancer Res., 2006, 12, 11.

[41] Reinbothe S., Larsson A.M., Vaapil M., Wigerup C., Sun J., Jögi A., et al.: “EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation”. Biochem. Biophys. Res. Commun., 2014, 445, 163.

[42] LaMontagne K.R., Butler J., Marshall D.J., Tullai J., Gechtman Z., Hall C., et al.: “Recombinant epoetins do not stimulate tumor growth in erythropoietin receptor-positive breast carcinoma models”. Mol. Cancer. Ther., 2006, 5, 347.

[43] Jin W., Lin Z., Zhang X., Kong L., Yang L.: “Effects and mechanism of recombinant human erythropoietin on the growth of human breast cancer MDA-MB-231 cells in nude mice”. Pathol. Res. Pract., 2015, 211, 570.

[44] Liang K., Esteva F.J., Albarracin C., Stemke-Hale K., Lu Y., Bianchini G., et al.: “Recombinant human erythropoietin antagonizes trastuzumab treatment of breast cancer cells via Jak2-mediated Src activation and PTEN inactivation”. Cancer Cell, 2010, 18, 423.

[45] Lester R.D., Jo M., Campana W.M., Gonias S.L.: “Erythropoietin promotes MCF-7 breast cancer cell migration by an ERK/mitogenactivated protein kinasedependent pathway and is primarily responsible for the increase in migration observed in hypoxia”. J. Biol. Chem., 2005, 280, 39273.

[46] Fu P., Jiang X., Arcasoy M.O.: “Constitutively active erythropoietin receptor expression in breast cancer cells promotes cellular proliferation and migration through a MAP-kinase dependent pathway”. Biochem. Biophys. Res. Commun., 2009, 379, 696.

[47] Trost N., Stepisnik T., Berne S., Pucer A., Petan T., Komel R., Debeljak N.: “Recombinant human erythropoietin alters gene expression and stimulates proliferation of MCF-7 breast cancercells”. Radiol. Oncol., 2013, 47, 382.

[48] Kumar S.M., Acs G., Fang D., Herlyn M., Elder D.E., Xu X.: “Functional erythropoietin autocrine loop in melanoma”. Am. J. Pathol., 2005, 166, 823.

[49] Lopez T.V., Lappin T.R., Maxwell P., Shi Z., Lopez-Marure R., Aguilar C., Rocha-Zavaleta L.: “Autocrine/paracrine erythropoietin signalling promotes JAK/STAT-dependent proliferation of human cervical cancer cells”. Int. J. Cancer, 2011, 129, 2566.

[50] Jeong J.Y., Hoxhaj G., Socha A.L., Sytkowski A.J., Feldman L.: “An erythropoietin autocrine/paracrine axis modulates the growth and survival of human prostate cancer cells”. Mol. Cancer Res., 2009, 7, 1150.

[51] Pelekanou V., Kampa M., Kafousi M., Dambaki K., Darivianaki K., Vrekoussis T., et al.: „Erythropoietin and its receptor in breast can- cer: correlation with steroid receptors and outcome”. Cancer Epidemiol. Biomarkers Prev., 2007, 16, 2016.

[52] Liang K., Qiu S., Lu Y., Fan Z.: “Autocrine/paracrine erythropoietin regulates migration and invasion potential and the stemness of human breast cancer cells”. Cancer Biol. Ther., 2014, 15, 89.

[53] Garber K.: “New drugs target hypoxia response in tumors”. J. Natl. Cancer Inst., 2005, 97, 1112.

[54] Onnis B., Rapisarda A., Melillo G.: “Development of HIF-1 inhibitors for cancer therapy”. J. Cell Mol. Med., 2009, 13, 2780.

[55] Myszczyszyn A., Czarnecka A.M., Matak D., Szymanski L., Lian F., Kornakiewicz A., et al.: “The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis”. Stem Cell Rev., 2015, 11, 919.

[56] Zhou B., Damrauer J.S., Bailey S.T., Hadzic T., Jeong Y., Clark K., et al.: “Erythropoietin promotes breast tumorigenesis through tumor- initiating cell self-renewal”. J. Clin. Invest., 2014, 124, 553.

[57] Marotta L.L., Almendro V., Marusyk A., Shipitsin M., Schemme J., Walker S.R., et al.: “The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24– stem cell-like breast cancer cells in human tumors”. J. Clin. Invest., 2011, 121, 2723.

[58] Fillmore C.M., Kuperwasser C.: “Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy”. Breast Cancer Res., 2008, 10, R25.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top