Article Data

  • Views 503
  • Dowloads 148

Original Research

Open Access

The TP53 - R72P (rs1042522) polymorphism and risk factors in breast cancer patients

  • M.R. Lisboa1
  • B.C. de Almeida2,*,
  • H.M. Lisboa Capelasso3
  • A.L. Escobar4
  • I.D.C. Guerreiro da Silva1

1Laboratory of Molecular and Proteomic Gynecology, Gynecology Department – Federal University of São Paulo – Pedro de Toledo Street, São Paulo

2Laboratory of Molecular and Structural Gynecology, Gynecology Department, University of São Paulo Faculty of Medicine – Dr. Arnaldo Avenue, São Paulo

3Federal University of Pará – UFPA, Belém

4Medicine Department of Federal University of Rondônia, Campus UNIR, Porto Velho, Brazil

DOI: 10.12892/ejgo4419.2018 Vol.39,Issue 6,December 2018 pp.963-972

Published: 15 December 2018

*Corresponding Author(s): B.C. de Almeida E-mail: bruc_10@hotmail.com

Abstract

The authors aimed to assess the incidence of TP53-R72P polymorphism correlating with risk factors and clinical-pathological features in breast cancer (BC). Genotypic distribution was higher for Arg/Pro (43.52%) comparing with Arg/Arg (38.36%) and Pro/Pro (18.12%), and the allele frequency was significantly higher for Arg (0.62%) in BC patients. Risk-factors such as age, menarche, pregnancy, hormonal therapy, ethnicity, and origin region showed relevance in case-control comparisons. Genotype distribution showed a high frequency of ER-positive and PR-positive in BC. HER-2 negative (87.8%) was significantly more frequently than positive, and the genotype classification was 40.5% Arg/Arg and 46.4% Arg/Pro. Almost all patients presented invasive ductal carcinoma (IDC) and underwent surgical treatment without neoadjuvant chemotherapy. TP53 - R72P polymorphism seems to be associated with some risk factors related to reproductive life, hormonal treatments, ethnicity, and lifestyle. Genetic variation between Arg and Pro alleles seems not to be directly correlated with BC development.

Keywords

Breast Cancer; R72P; TP53; Genetic polymorphism; p53 protein; SNP.

Cite and Share

M.R. Lisboa,B.C. de Almeida,H.M. Lisboa Capelasso,A.L. Escobar,I.D.C. Guerreiro da Silva. The TP53 - R72P (rs1042522) polymorphism and risk factors in breast cancer patients. European Journal of Gynaecological Oncology. 2018. 39(6);963-972.

References

[1] Kümler I., Balslev E., Knop A.S., Brünner N., Klausen T.W., Jespersen S.S., et al.: “Expression patterns of biomarkers in primary tumors and corresponding metastases in breast cancer”. Appl. Immunohistochem. Mol. Morphol., 2016.

[2] Tan X.L., Guo L., Wang G.H., “Polyporus umbellatus inhibited tumor cell proliferation and promoted tumor cell apoptosis by downregulating AKT in breast cancer”. Biomed. Pharmacother., 2016, 83, 526.

[3] Ping Z., Siegal G.P., Almeida J.S., Schnitt S.J., Shen D.: “Mining genome sequencing data to identify the genomic features linked to breast cancer histopathology”. J. Pathol. Inform., 2014, 5, 3.

[4] Yersal O., Barutca S.: “Biological subtypes of breast cancer: Prognostic and therapeutic implications”. World J. Clin. Oncol., 2014, 5, 412.

[5] Breast Cancer.Org,: “U.S. breast cancer statistics”. Breast Cancer Org., 2015. Available at: http://www.breastcancer.org/symptoms/understand_bc/statistics

[6] Brazilian National Cancer Institute – INCA: “Estimate incidence of cancer in Brazil – 2014”. 2014, 1.

[7] De Almeida G. S., Almeida LO.A.L., Araujo G.M.R., Weller M.:“Reproductive Risk Factors Differ Among Breast Cancer Patients and Controls in a Public Hospital of Paraiba, Northeast Brazil”. Asian Pac. J. Cancer Prev., 2015, 16, 2959.

[8] Chen F.M., Ou-Yang F., Yang S.F., Tsai E.M., Hou M.F.: “P53 codon 72 polymorphism in Taiwanese breast cancer patients”. Kaohsiung J. Med. Sci., 2013, 29, 259.

[9] Leu J.I., Murphy M.E., George D.L.: “The p53 codon 72 polymorphism modifies the cellular response to inflammatory challenge in the liver”. J. Liver., 2013, 2, 117.

[10] Agboola A.O., Banjo A.A., Anunobi C.C., Ayoade B.A., Deji-Agboola A.M., Musa A.A., et al.: “Molecular profiling of breast cancer in Nigerian women identifies an altered p53 pathway as a major mechanism underlying its poor prognosis compared with British counterpart”. Malays. J. Pathol., 2014, 36, 13.

[11] Bertucci F., Finetti P., Birnbaum D.: “Basal breast cancer: a complex and deadly molecular subtype”. Curr. Mol. Med., 2012, 12, 96.

[12] Somali I., Ustaoglu B.Y., Tarhan M.O., Yigit S.C., Demir L., Ellidokuz H. et al.: “Clinicopathologic and demographic evaluation of triple- negative breast cancer patients among a turkish patient population: a single center experience”. Asian Pac. J. Cancer Prev., 2013, 14, 6013.

[13] Varna M., Bousquet G., Plassa L.F., Bertheau P., Janin A.: “TP53 status and response to treatment in breast cancers”. J. Biomed. Biotechnol., 2011, 2011, 1.

[14] Almeida B.C., Kleine J.P., Camargo-Kosugi C.M., Lisboa M.R., França C.N., França J.P., Silva I.D.: “Analysis of polymorphisms in codons 11, 72 and 248 of TP53 in brazilian women with breast cancer”. Genet. Mol. Res., 2016, 15, 1.

[15] Bertheau P., Lehmann-Che J., Varna M., Dumay A., Poirot B., Porcher R., et al.: “P53 in Breast Cancer Subtypes and New Insights Into Response To Chemotherapy”. Breast., 2013, 22, 27.

[16] Guimaraes D.P., Hainaut P.: “TP53: a key gene in human cancer”. Biochimie., 2002, 84, 83.

[17] Pim D., Banks L.: “P53 polymorphic variants at codon 72 exert different effects on cell cycle progression”. Int. J. Cancer., 2004, 108, 196.

[18] Whibley C., Pharoah P. D., Hollstein M.: “p53 polymorphisms: cancer implications”. Nat. Rev. Cancer., 2009, 9, 95.

[19] Bišof V., Salihović M.P., Narančić N.S., Skarić-Jurić T., Jakić-Razumović J., Janićijević B., Rudan P.: “The TP53 gene polymorphisms and survival of sporadic breast cancer patients”. Med. Oncol., 2012, 29, 472.

[20] Fitarelli-Kiehl M., Macedo G.S., Schlatter R.P., Koehler- Santos P., Matte Uda S., Ashton-Prolla P., Giacomazzi J.: “Comparison of multiple genotyping methods for the identification of the cancer predisposing founder mutation p.R337H in TP53”. Genet. Mol. Biol., 2016, 39, 203.

[21] Santos D.J.S., Palomares N.B., Normando D., Quintão C.C.A.: “Race versus ethnicity: Differing for better application”. Dental Press J. Orthod., 2010, 15, 121.

[22] Jaiswal P.K., Goel A., Mittal R.D.: “Association of p53 codon 248 (exon 7) with urinary bladder cancer risk in the North Indian population”. Biosci. Trends., 2011, 5, 205.

[23] Hainaut P., Pfeifer G. P.: “Somatic TP53 mutations in the era of genome sequencing”. Cold Spring Harb. Prespect. Med., 2015, 6, 1.

[24] Dahabreh I.J., Schmid C.H., Lau J., Varvarigou V., Murray S., Trikalinos T.A.: “Genotype misclassification in genetic association studies of the rs1042522 TP53 (Arg72Pro) polymorphism: a systematic review of studies of breast, lung, colorectal, ovarian, and endometrial cancer”. Am. J. Epidemiol., 2013, 177, 1317.

[25] Stojnev S., Golubović M., Babović P.: “TP53 gene mutations–from guardian of the genome to oncogene”. Acta Med. Medianae., 2010, 48, 59.

[26] Silva A.C.G. da, Leal C.S., Nunesmaia H.G.S.: “Menarche age and breast cancer in Paraíba State-Brazil”. Rev. Bras. Ciê. Saúde., 2004, 8, 175.

[27] Medina D.: “Pregnancy protection of breast cancer: new insights reveal unanswered questions”. Breast Cancer Res., 2013, 15, 103.

[28] Meier-Abt F., Bentires-Alj M.: “How pregnancy at early age protects against breast cancer”. Trends Mo. Med., 2014, 20, 143.

[29] Meier-Abt F., Milani E., Roloff T., Brinkhaus H., Duss S., Meyer D.S., Klebba I., et al.: “Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potencial of basal stem/progenitor cells isolated from mouse mammary epithelium”. Breast Cancer Res., 2013, 15, R36.

[30] Bracamontes C.G., Lopez-Valdez R., Subramani R., Arumugam A., Nandy S., Rajamanickam V., et al.: “The serum protein profile of early parity induces protection against breast cancer”. Oncotarget., 2016, 7, 82538.

[31] Ma Y., Yang J., Liu Z., Zhang P., Yang Z., Wang Y., Qin H.: “No significant association between the TP53 codon 72 polymorphism and breast cancer risk: a meta-analysis of 21 studies involving 24,063 subjects”. Breast Cancer Res. Treat., 2011, 125, 201.

[32] Proestling K., Hebar A., Pruckner N., Marton E., Vinatzer U., Schreiber M.: “The Pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk”. PLoS One., 2012, 7, 1.

[33] Gaspar P.A., Hutz M.H., Salzano F.M., Weimer T.A.: “TP53 polymorphisms and haplotypes in south amerindians and neo-Brazilians”. Ann. Hum. Biol., 2001, 28, 184.

[34] Leu J.I., Murphy M.E., George D.L.: “The p53 codon 72 polymorphism modifies the cellular response to inflammatory challenge in the liver”. J. Liver., 2013, 2, 117.

[35] Pim D., Banks L.: “p53 polymorphic variants at codon 72 exert different effects on cell cycle progression”. Int. J. Cancer., 2004, 108, 196.

[36] Partridge A.H., Rumble R.B., Carey L.A., Come S.E., Davidson N.E., Di Leo A., et al.: “Chemotherapy and targeted therapy for women with human epidermal growth factor receptor 2-negative (or unknown) advanced breast cancer: American Society of Clinical Oncology Clinical Practice Guideline”. J. Clin. Oncol., 2014, 32, 3307.

[37] Lopez M., Di Lauro L., Viola G., Foggi P., Conti F., Corsetti S., et al.: “Adjuvant chemotherapy in hormone-receptor positive HER2-negative early breast cancer”. Clín. Terap., 2009, 160, 481.

[38] Dagnoni C., Macedo L.M., Argenti C., Januário J.E.A., de Almeida T.A., Skare N.G.: “Clinical and tumor profile of patients undergoing neoadjuvant treatment of breast cancer at Erasto gaertner Hospital”. Rev. Bras. Mastologia., 2016, 26, 158.

[39] Da Costa M.: “Neoadjuvant chemotherapy in operable breast cancer: literature review”. Rev. Bras. Cancerologia., 2013, 59, 261.

[40] Ramalho E.A., Silva-Filho J.L., Cartaxo M.F., Cavalcanti C.B., Rêgo M.J., Oliveira M.B., Beltrão EI.: “Assessment of changes in the BRCA2 and P53 genes in breast invasive ductal carcinoma in northeast Brazil”. Biol. Res., 2014, 47, 1.

[41] Powell E., Piwnica-Worms D., H. Piwnica-Worms.: “Contribution of p53 to metastasis”. Cancer Discov., 2014, 4, 405.

[42] Gonçalves M.L., Borja S.M., Cordeiro J.A., Saddi V.A., Ayres F.M., Vilanova-Costa C.A., Silva A.M.: “Association of the TP53 codon 72 polymorphism and breast cancer risk: a meta-analysis”. Springerplus., 2014, 3, 1.

[43] Chen F.M., Ou-Yang F., Yang S.F. Tsai E.M., Hou M.F.: “P53 codon 72 polymorphism in Taiwanese breast cancer patients”. Kaohsiung J. Med. Sci., 2013, 29, 259.

[44] Liu J., Tang X., Li M., Lu C., Shi J., Zhou L., Yuan Q., Yang M.: “Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility”. Breast Cancer Res. Treat., 2013, 140, 151.

[45] Sharma S., Sambyal V., Guleria K., Manjari M., Sudan M., Uppal M.S., et al.: “TP53 polymorphisms in sporadic North Indian breast cancer patients”. Asian Pac. J. Cancer Prev., 2014, 15, 6871.

[46] Hao X.D., Yang Y., Song X., Zhao X.K., Wang L.D., He J.D., et al.: “Correlation of telomere length shortening with TP53 somatic mutations, polymorphisms and allelic loss in breast tumors and esophageal cancer”. Oncol. Rep., 2013, 29, 226.

[47] Vijayaraman K.P., Veluchamy M., Murugesan P., Shanmugiah K.P., Kasi P.D.: “p53 exon 4 (codon 72) polymorphism and exon 7 (codon 249) mutation in breast cancer patients in southern region (Madurai) of Tamil Nadu”. Asian Pac. J. Cancer Prev., 2012, 13, 511.

[48] Eltahir H.A., Adam A.A., Yahia Z.A., Ali N.F., Mursi D.M., Higazi A.M., et al.: “p53 Codon 72 arginine/proline polymorphism and cancer in Sudan”. Mol. Biol. Rep., 2012, 39, 10833.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top