Article Data

  • Views 626
  • Dowloads 123

Reviews

Open Access

Has the time come for therapy linked to cancer stem cells in ovarian cancer?

  • A. Markowska1,*,
  • B. Kasprzak2
  • K. Jaszczyńska-Nowinka3
  • J. Markowska3

1Perinatology and Gynecology Department, Poznań University of Medical Sciences, Poznań, Poland

2Department of Biophysics, Poznań University of Medical Sciences, Poznań, Poland

3Department of Gynaecological Oncology, Szpital Kliniczny Przemienienia Pańskiego, Poznan University of Medical Sciences, Poznań, Poland

DOI: 10.12892/ejgo4728.2019 Vol.40,Issue 5,October 2019 pp.697-701

Accepted: 28 August 2018

Published: 10 October 2019

*Corresponding Author(s): A. Markowska E-mail: annamarkowska@vp.pl

Abstract

Epithelial ovarian cancer (EOC) is the seventh most common cancer in women around the world and current therapies very rarely provide complete disease relapse. The cancer stem cell (CSC) concept has been the subject of broad recent studies. In this review the authors present basic identification methods on ovarian CSCs and current therapeutic approaches linked to this concept.

Keywords

Ovarian cancer stem cells; Ovarian cancer

Cite and Share

A. Markowska,B. Kasprzak,K. Jaszczyńska-Nowinka,J. Markowska. Has the time come for therapy linked to cancer stem cells in ovarian cancer?. European Journal of Gynaecological Oncology. 2019. 40(5);697-701.

References

[1] Cohnheim J.: “Ueber entzundung und eiterung”. Path. Anat. Physiol. Klin. Med., 1867, 40, 1.

[2] Cohnheim J.: “Congenitales, quergestreiftes Muskelsarkon der Nireren”. Virchows Arch., 1875, 65, 64.

[3] Bonnet D., Dick J.E.: “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell”. Nat. Med., 1997, 3, 730.

[4] Sell S.: “Stem cell origin of cancer and differentiation therapy”. Crit. Rev. Oncol. Hematol., 2004, 51, 1.

[5] Bapat S.A., Mali A.M., Koppikar C.B., Kurrey N.K.: “Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer”. Cancer Res., 2005, 65, 3025.

[6] Di J., Duivema-de Boer T., Figdor C.G., Torensma R.: “Aiming to immune elimination of ovarian cancer stem cells”. world J. Stem Cells, 2013, 5, 149.

[7] Shah M.M., Landen C.N.: “Ovarian cancer stem cells: are they real and why are they important?” Gynecol. Oncol., 2014, 132, 483.

[8] Ahmed N., Abubaker K., Findlay J.K.: “Ovarian cancer stem cells: Molecular concepts and relevance as therapeutic targets”. Mol. Aspects Med., 2014, 39, 110.

[9] Ferlay J., Soerjomataram I., Ervik M., Dikshit R., Eser S., Mathers C., et al.: “GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11”. Lyon, France: International Agency for Research on Cancer, 2013. Available at: http://globocan.iarc.fr

[10] Rosen B., Kwon J., Fung Kee Fung M., Gagliardi A., Chambers A.: “Systematic review of management options for women with a hereditary predisposition to ovarian cancer”. Gynecol. Oncol., 2004, 93, 280.

[11] Reynolds E.A., Moller K.A.: “A review and an update on the screening of epithelial ovarian cancer”. Curr. Probl. Cancer, 2006, 30, 203.

[12] Seeber B., Driscoll D.A.: “Hereditary breast and ovarian cancer syndrome: should we test adolescents?” J. Pediatr. Adolesc. Gynecol., 2004, 17, 161.

[13] Palma M., Ristori E., Ricevuto E., Giannini G., Gulino A.: “BRCA1 and BRCA2: the genetic testing and the current management options for mutation carriers”. Criti. Rev. Oncol. Hemat., 2006, 57, 1.

[14] Heintz A.P., Odicino F., Maisonneuve P., Quinn M.A., Benedet J.L., Creasman W.T., et al.: “Carcinoma of the ovary. FIGO 6th Annual Report on the Results of Treatment in Gynecological Cancer”. Int.

J. Gynaecol. Obstet., 2006, 95, S161.

[15] Reynolds E.A., Moller K.A.: “A review and an update on the screening of epithelial ovarian cancer”. Curr. Probl. Cancer, 2006, 30, 203.

[16] Bookman M.A.: “The addition of new drugs to standard therapy in the first-line treatment of ovarian cancer”. Ann. Oncol., 2010, 7, vii211.

[17] Bristow R.E., Tomacruz R.S., Armstrong D.K., Trimble E.L., Montz F.J.: “Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis”. J. Clin. Oncol., 2002, 20, 1248.

[18] du Bois A., Reuss A., Pujade-Lauraine E., Harter P., Ray-Coquard I., Pfisterer J.: “Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO)”. Cancer, 2009, 115, 1234.

[19] Hall M., Gourley C., McNeish I., Ledermann J., Gore M., Jayson G., et al.: “Targeted anti-vascular therapies for ovarian cancer: current evidence”. Br. J. Cancer, 2013, 108, 250.

[20] Marhaba R., Klingbeil P., Nuebel T., Buechler M.W., Zoeller M.: “CD44 and EpCAM: cancer-initiating cell markers”, Curr. Mol. Med. 2008, 8, 784-804.

[21] Alvero A.B., Chen R., Fu H.H., Montagna M., Schwartz P.E., Rutherford T., et al.: “Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance”. Cell Cycle, 2009, 1, 158.

[22] Meng E., Long B., Sullivan P., , McClellan S., Finan M.A., Reed E., et al.: “CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival”. Clin. Exp. Metastasis, 2012, 8, 939.

[23] Ferrandina G., Bonanno G., Pierelli L., Perillo A., Procoli A., Mariotti A,. et al.: “Expression of CD133-1 and CD133-2 in ovarian cancer”. Int. J. Gynecol. Cancer, 2008, 18, 506.

[24] Baba T., Convery P.A., Matsumura N., Whitaker R.S., Kondoh E., Perry T., et al.: “Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells”. Oncogene, 2009, 28, 209.

[25] Smith L.M., Nesterova A., Ryan M.C., Duniho S., Jonas M., Anderson M., et al.: “CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers”. Br. J. Cancer, 2008, 99, 100.

[26] Luo L., Zeng J., Liang B., Zhao Z., Sun L., Cao D., et al.: “Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome”. Exp. Mol. Pathol., 2011, 91, 596.

[27] Zhang S., Balch C., Chan M.W., Lai H.C., Matei D., Schilder J.M., et al.: “ Identification and characterization of ovarian cancerinitiating cells from primary human tumors”. Cancer Res., 2008, 68, 4311.

[28] Kristiansen G., Denkert C., Schlüns K., Dahl E., Pilarsky C., Hauptmann S.: “CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival”. Am. J. Pathol., 2002, 161, 1215.

[29] Landen C.N. Jr., Goodman B., Katre A.A. , Steg A.D., Nick A.M., Stone R.L., et al.: “Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer”. Mol. Cancer Ther., 2010, 9, 3186.

[30] Wang Y.C., Yo Y.T., Lee H.Y., Liao Y.P., Chao T.K., Su P.H., et al.: “ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome”. Am. J. Pathol., 2012, 180, 1159.

[31] Silva I.A., Bai S., McLean K., Yang K., Griffith K., Thomas D., et al.: “Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival”. Cancer Res., 2011, 71, 3991.

[32] Kryczek I.1, Liu S., Roh M., Vatan L., Szeliga W., Wei S., et al.: “Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells”. Int. J. Cancer, 2012, 130, 29.

[33] Chang B.1., Liu G., Xue F., Rosen D.G., Xiao L., Wang X., et al.: “ALDH1 expression correlates with favorable prognosis in ovarian cancers”. Mod. Pathol., 2009, 22, 817.

[34] Lee T.I., Jenner R.G., Boyer L.A., Guenther M.G., Levine S.S., Kumar R.M., et al.: “Control of developmental regulators by Polycomb in human embryonic stem cells”. Cell, 2006, 125, 301.

[35] Yang G.F., He W.P., Cai M.Y., He L.R., Luo J.H., Deng H.X., et al.: “Intensive expression of Bmi-1 is a new independent predictor of poor outcome in patients with ovarian carcinoma”. BMC Cancer, 2010, 10, 133.

[36] He Q.Z., Luo X.Z., Zhou Q., Wang K., Li S.X., Li Y., et al.: “Expression of nestin in ovarian serous cancer and its clinicopathologic significance”. Eur. Rev. Med. Pharmacol. Sci., 2013, 17, 2896.

[37] Wang Q., He W., Lu C., Wang Z., Wang J., Giercksky K.E., et al.: “Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma”. Anticancer Res., 2009, 29, 1233.

[38] Tomao F., Papa A., Rossi L., Strudel M., Vici P., Lo Russo G., et al.: “Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach”. J. Exper. Clin. Cancer Res., 2013, 32, 48.

[39] Peng S., Maihle N.J., Huang Y.: “Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer”. Oncogene, 2010, 29, 2153.

[40] Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., Jones D.L., et al.: “Cancer stem cells - perspectives on current status and future directions: AACR Workshop on Cancer Stem Cells”. Cancer Res., 2006, 66, 9339.

[41] Ali AY., Farrand L., Kim J.Y,. Byun S., Suh J.Y., Lee H.J., et al.: “Molecular determinants of ovarian cancer chemoresistance: new insights into an old conundrum”. Ann. N.Y. Acad. Sci., 2012, 1271, 58-67.

[42] Giménez-Bonafé P., Tortosa A., Pérez-Tomás R.: “Overcoming drug resistance by enhancing apoptosis of tumor cells”. Curr. Cancer Drug Targets, 2009, 9, 320-40.

[43] Wang E., Bhattachryya S., Szabolcs A., Rodriguez-Aguayo C., Jennings NB., Lopez-Berestein G., et al.: “Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer”. PLoS One, 2011, 6, e17918.

[44] Abubaker K., Latifi A., Luwor R., Nazaretian S., Zhu H., Quinn MA., et al: “Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden”. Mol. Cancer, 2013, 12, 24.

[45] Abubaker K., Luwor R.B., Escalona R., McNally O., Quinn MA., Thompson E.W., et al.: “Targeted disruption of the JAK2/STAT3 pathway in combination with systemic administration of paclitaxel inhibits the priming of ovarian cancer stem cells leading to a reduced tumor burden”. Front Oncol., 2014, 9, 75.

[46] Craveiro V., Yang-Hartwich Y., Holmberg J.C., Joo W.D., Sumi N.J., Pizzonia J., et al.: “Phenotypic modifications in ovarian cancer stem cells following paclitaxel treatment”. Cancer Med., 2013, 2, 751.

[47] Eyler C.E., Rich J.N.: “Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis”. J. Clin. Oncol., 2008, 26, 2839.

[48] Liao J., Qian F., Tchabo N., Mhawech-Fauceglia P., Beck A., Qian Z., et al.: “Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism”. PLoS One, 2014, 9, e84941.

[49] Zhou N., Wn X., Yang B., Yang X., Zhang D., Qing G.: “Stem cell characteristics of dormant cells and cisplatin - induced effects on the stemness of epithelial ovarian cancer cells”. Mol. Med. Rep., 2014, 10, 2495.

[50] Massard C., Deutsch E., Soria JC.: “Tumour stem cell-targeted treatment: elimination or differentiation”. Ann. Oncol., 2006, 17, 1620.

[51] Brooks T.A., Minderman M., O'Loughlin K.L., Pera P., Ojima I., Baer M.R., et al.: “Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein”. Mol. Cancer Ther., 2003, 2, 1195.

[52] Kolonisch T., Wiechec E., Hombach-Klonisch S., Ande S.R., Wesselborg S., Schulze-Osthoff K., et al.: “Cancer stem cell markers in common cancers - therapeutic implications”. Trends Mol. Med., 2008, 14, 450.

[53] Sironen R.K., Tammi M., Tammi R., Auvinen P.K, Anttila M., Kosma V.M.: “Hyaluronan in human malignancies”. Exp. Cell. Res., 2011, 317, 383.

[54] Bourguignon L.Y., Peyrollier K., Xia W., Gilad E.: “HyaluronanCD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells”. J. Biol. Chem., 2008, 283, 1735.

[55] Chen J., Wang J., Zhang Y., Chen D., Yang C., Kai C., et al.: “Observation of ovarian cancer stem cell behavior and investigation of potential mechanisms of drug resistance in three-dimensional cell culture”. J. Biosci. Bioeng., 2014, 118, 214.

[56] Kim M.J., Kim A.R., Jeong J.Y., Kim K.I., Kim T.H., Lee C., et al.: “Correlation of ALDH1 and Notch3 expression: clinical implication in ovarian carcinomas”. J Cancer, 2017, 08, 3331. doi:10.7150/jca.18955

[57] Zhang B., Wang X., Cai F., Chen W., Loesch U., Zhong X.Y.: “Antitumor properties of salinomycin on cisplatin-resistant human ovarian cancer cells in vitro and in vivo: involvement of p38 MAPK activation”. Oncol. Rep., 2013, 29, 1371.

[58] Parajuli B., Shin S.J., Kwon S.H., Cha S.D., Chung R., Park W.J., et al.: “Salinomycin induces apoptosis via death receptor-5 up-regulation in cisplatin-resistant ovarian cancer cells”. Anticancer Res., 2013, 33, 1457.

[59] Casagrande F., Cocco E., Bellone S., Richter C.E., Bellone M., Todeschini P., et al.: “Eradication of chemotherapy-resistant CD44+ human ovarian cancer stem cells in mice by intraperitoneal administration of clostridium perfringens enterotoxin”. Cancer, 2011, 117, 5519.

[60] Carter K., Rameshwar P., Ratajczak M.Z., Kakar S.S.: “Verrucarin J inhibits ovarian cancer and targets cancer stem cells”. Oncotarget, 2017, 8, 92743.

[61] Cha S.Y., Choi Y.H., Hwang S., Jeong J.Y., An H.J.: “Clinical Impact of microRNAs Associated With Cancer Stem Cells as a Prognostic Factor in Ovarian Carcinoma”. J. Cancer, 2017, 8, 3538.

[62] Parida S., Chakraborty S., Maji R.K., Ghosh Z.: “Elucidating the gene regulatory networks modulating cancer stem cells and non-stem cancer cells in high grade serous ovarian cancer”. Genomics, 2018, S0888-7543, 30015.

[63] Reimer D., Boesch M., Wolf D., Marth C., Sopper S., Hatina J., et al.: “Truncated isoform Vav3.1 is highly expressed in ovarian cancer stem cells and clinically relevant in predicting prognosis and platinum-response”. Int. J. Cancer, 2018, 142, 1640.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top