Article Data

  • Views 749
  • Dowloads 142

Original Research

Open Access

Clinical significance of β-catenin, hTERT, p53, and Wnt7A as biomarkers for ovarian cancer

  • E. Khatoon1,2,*,
  • N. Deka1
  • M. Deka2
  • K.K. Saikia2
  • M.N. Baruah3
  • G.N. Ahmed3

1Department of Obstetrics and Gynaecology, Gauhati Medical College, Assam

2Department of Bioengineering & Technology, Institute of Science and Technology, Gauhati University, Assam

3North East Cancer Hospital and Research Institute, Jorabat, Guwahati, Assam (India)

DOI: 10.31083/j.ejgo.2020.02.5138 Vol.41,Issue 2,April 2020 pp.181-187

Published: 15 April 2020

*Corresponding Author(s): E. Khatoon E-mail: elinakhatoon@gmail.com

Abstract

Aim: The aim of the present study was to examine the association of β-catenin, hTERT, p53, and Wnt7A with the clinicopathologic features of epithelial ovarian carcinoma (EOC). Materials and Methods: By using qRT-PCR method, the authors attempted to elucidate the diagnostic evaluation of β-catenin, hTERT, p53, and Wnt7A mRNA for ovarian malignancy. Results: It was observed that, compared to the healthy control group, the expression levels of β-catenin, hTERT, p53, and Wnt7A were upregulated in all the ovarian cancer cases. The current study indicated that individual expression of β-catenin, hTERT and Wnt7A did not significantly correlate with patients’ clinicopathological parameters. However, expression of p53 significantly correlated with the FIGO Stage (p < 0.001) and histological grade (p < 0.001) of EOC patients. Conclusions: The mRNA expression levels of β-catenin, hTERT, p53, and Wnt7A were upregulated in all the ovarian cancer cases, compared to the healthy controls, which signifies their roles as ovarian cancer biomarkers. These biomarkers can be recognized as a potential important target for detection and anticancer therapies for ovarian cancer cases.

Keywords

Wnt7A; p53; β-catenin; hTERT; Clinicopathological.

Cite and Share

E. Khatoon,N. Deka,M. Deka,K.K. Saikia,M.N. Baruah,G.N. Ahmed. Clinical significance of β-catenin, hTERT, p53, and Wnt7A as biomarkers for ovarian cancer. European Journal of Gynaecological Oncology. 2020. 41(2);181-187.

References

[1] T., Ogawa S., Kawano Y., Ohishi Y., Kobayashi H., Hirakawa T., Nakano H.: “Histological classification of ovarian cancer”. Med. Electron Microsc., 2003, 36, 9.

[2] Cadigan K.M., Nusse R.: “Wnt signaling: a common theme in animal development”. Genes Dev., 1997, 11, 3286.

[3] Angers S., Moon R.T.: “Proximal events in Wnt signal transduction”. Nat. Rev. Mol. Cell Biol., 2009, 10, 468.

[4] Polakis P.: “Wnt signaling and cancer”. Genes Dev., 2000, 14, 1837.

[5] Peifer M, Polakis P.: “Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus”. Science, 2000, 287, 1606.

[6] Hayashi K., Yoshioka S., Reardon S.N., Rucker E.B. III, Spencer T.E., Demayo F.J., et al.: “WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development”. Biol. Reprod., 2011, 84, 308.

[7] Hayashi K., Burghardt R.C., Bazer F.W., Spencer T.E.: “WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development”. Endocrinol., 2007, 148, 3496.

[8] Kolquist K.A., Ellisen L.W., Counter C.M., Meyerson M., Tan L.K., Weinberg R.A., et al.: Expression of TERT in early premalignant lesion and a subset of cells in normal tissues. Nat. Genet., 1998, 19, 182.

[9] Harley C.B., Futcher A.B., Greider C.W.: “Telomeres shorten during ageing of human fibroblasts”. Nature, 1990, 345, 458.

[10] Counter C.M., Hirte H.W., Bacchetti S., Harley C.B.: “Telomerase activity in human ovarian carcinoma”. Proc. Natl. Acad. Sci. USA, 1994, 9, 2900.

[11] Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L., Coviello G.M., Wright W.E., Weinrich S.L., Shay J.W.: “Specific association of human telomerase activity with immortal cells and cancer”. Science, 1994, 266, 2011.

[12] Lamb P., Crawford L.: “Characterization of the human p53 gene”. Mol. Cell. Biol. 1986, 6, 1379.

[13] Corney D.C., Flesken-Nikitin A., Choi J., Nikitin A.Y.: “Role of p53 and Rb in Ovarian Cancer”. Adv. Exp. Med. Biol., 2008, 622, 99.

[14] Frum R.A., Grossman S.R.: “Mechanisms of mutant p53 stabilization in cancer”. Subcell. Biochem., 2014, 85, 187.

[15] Malkin D., Jolly K.W., Barbier N., Look A.T., Friend S.H., Gebhardt M.C., Andersen T.I., Borresen A.L., Li F.P., Garber J.: “Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms”. N. Engl. J. Med., 1992, 326, 1309.

[16] Jin S., Levin A.J.: “The p53 functional circuit”. J. Cell Sci., 2001, 114, 4139.

[17] Liu W., Wu X., Zhang W., Montenegro R.C., Fackenthal D.L., Spitz J.A., et al.: “Relationship of EGFR mutations, expression, amplification, and polymorphisms to epidermal growth factor receptor inhibitors in the NCI60 cell lines”. Clin. Cancer Res., 2007, 13, 6788.

[18] Ji L., Cao X.F., Wang H.M., Li Y.S., Zhu B., Xiao J., Wang D.: “Expression level of beta-catenin is associated with prognosis of esophageal carcinoma”. World J. Gastroenterol., 2007, 13, 2622.

[19] Weglarz L., Molin I., Orchel A., Parfiniewicz B., Dzierzewicz Z.: “Quantitative analysis of the level of p53 and p21(WAF1) mRNA in human colon cancer HT-29 cells treated with inositol hexaphosphate”. Acta Biochim. Pol., 2006, 53, 349.

[20] Okoye U.C., Malbon C.C., Wang H.Y.: “Wnt and Frizzled RNA expression in human mesenchymal and embryonic (H7) stem cells”. J. Mol. Signal., 2008, 26, 3.

[21] Livak K.J., Schmittgen T.D.: “Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method”. Methods, 2001, 25, 402.

[22] Lengyel E.: “Ovarian cancer development and metastasis”. Am. J. Pathol., 2010, 177, 1053.

[23] Agarwal R., Kaye S.B.: “Ovarian cancer: strategies for overcoming resistance to chemotherapy”. Nat. Rev. Cancer, 2003, 3, 502.

[24] Sharma J.D., Kataki A.C., BarmanD., SharmaA., Kalita M.: “Cancer statistics in Kamrup urban district: Incidence and mortality in 2007–2011”. Indian J. Cancer, 2016, 53, 600.

[25] Lalwani N., Prasad S.R., Vikram R., Shanbhogue A.K., Huettner P.C., Fasih N.: “Histologic, Molecular, and Cytogenetic Features of Ovarian Cancers: Impli cations for Diagnosis and Treatment”. RadioGraphics, 2011, 31, 625.

[26] MacDonald B.T., Tamai K., He X.: “Wnt/beta-catenin signaling: components, mechanisms, and diseases”. Dev. Cell., 2009, 17, 9.

[27] Faleiro-Rodrigues C., Macedo-Pinto I., Pereira D., et al.: “Association of E-cadherin and beta-catenin immunoexpression with clinicopathologic features in primary ovarian carcinomas”. Hum. Pathol., 2004, 35, 663.

[28] Marques F.R., Fonsechi-Carvasan G.A., Angelo Andrade L.A., et al.: “Immunohistochemical patterns for alpha- and beta-catenin, E and N-cadherin expression in ovarian epithelial tumors”. Gynecol. Oncol., 2004, 94, 16.

[29] Moreno-Bueno G., Gamallo C., Perez-Gallego L., et al.: “Betacatenin expression pattern, beta-catenin gene mutations, and microsatellite instability in endometrioid ovarian carcinomas and synchronous endometrial carcinomas”. Diagn. Mol. Pathol. 2001, 10, 116.

[30] Saegusa M., Okayasu I.: “Frequent nuclear beta-catenin accumulation and associated mutations in endometrioid-type endometrial and ovarian carcinomas with squamous differentiation”. J. Pathol., 2001, 194, 59.

[31] Zhai Y., Wu R., Schwartz D.R., Darrah D., Reed H., Kolligs F.T., et al.: “Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas”. Am. J. Pathol., 2002, 160, 1229.

[32] Zhang X.L., Peng C.J., Peng J., Jiang L.Y., Ning X.M., Zheng J.H.: “Prognostic role of Wnt7a expression in ovarian carcinoma patients”. Neoplasma, 2010, 57, 545.

[33] Yoshioka S., King M.L., Ran S., Okuda H., MacLean J.A., McAsey M.E., et al.: “Wnt7A regulates tumor growth and progression in ovarian cancer through the Wnt/A-catenin pathway”. Mol. Cancer Res., 2012, 10, 469.

[34] Psyrri A., Kountourakis P., Yu Z., Papadimitriou C., Markakis S., Camp R.L., et al.: “Analysis of p53 protein expression levels on ovarian cancer tissue microarray using automated quantitative analysis elucidates prognostic patient subsets”. Ann. Oncol. 2007, 18, 709–715.

[35] Kupryjanczyk J., Thor A.D., Beauchamp R., Merritt V., Edgerton S.M., Bell D.A., Yandell D.W.: “p53 gene mutations and protein accumulation in human ovarian cancer”. Proc. Natl. Acad. Sci. U S A, 1993, 90, 4961.

[36] Kupryjanczyk J., Bell D.A., Dimeo D., Beauchamp R., Thor A.D., Yandell D.W.: “p53 gene analysis of ovarian borderline tumors and stage I carcinomas”. Hum. Pathol. 1995, 26, 387.

[37] Zheng J., Benedict W.F., Xu H.J., Hu S.X., Kim T.M., Velicescu M., et al.: “Genetic disparity between morphologically benign cysts con-tiguous to ovarian carcinomas and solitary cystadenomas”. J. Natl. Cancer Inst., 1995, 87, 1146.

[38] Skomedal H., Kristensen G.B., Abeler V.M., Borresen-Dale A.L., Trope C., Holm R.: “TP53 protein accumulation and gene mutation in relation to overexpression of MDM2 protein in ovarian borderline tumours and stage I carcinomas”. J. Pathol. 1997, 181, 158.

[39] O’Neill C.J., Deavers M.T., Malpica A., Foster H., McCluggage W.G.: “An immunohistochemical comparison between lowgrade and high-grade ovarian serous carcinomas: significantly higher ex-pression of p53, MIB1, BCL2, HER-2/neu, and C-KITin high-grade neoplasms”. Am. J. Surg. Pathol., 2005, 29, 1034.

[40] Pothuir B., Leitao M., Barakat R.,Akram M., Bogomolniy F., Olvera N., Lin O.: “Genetic analysis of ovarian carcinoma histogenesis”. Gynecol. Oncol., 2001, 80, 277.

[41] Werness B.A., Parvatiyar P., Ramus S.J.,Whittemore A.S., Garlinghouse-Jones K., Oakley-Girvan I., et al.: “Ovarian carcinoma in situ with germline BRCA1 mutation and loss of heterozygosity at BRCA1 and TP53”. J. Natl. Cancer Inst., 2000, 92, 1088.

[42] Shih Ie M., Kurman R.J.: “Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis”. Am. J. Pathol., 2004, 164, 1511.

[43] McKenzie K.E., Umbricht C.B., Sukumar S.: “Applications of telomerase research in the fight against cancer”. Mol. Med. Today, 1999, 5, 114.

[44] Shay J.W., Bacchett S.: “A survey of telomerase activity in human cancer”. Eur. J. Cancer, 1997, 33, 787.

[45] Datar R.H., Naritoku W.Y., Li P., Tsao-Wei D., Groshen S., Taylor C.R., Imam S.A.: “Analysis of telomerase activity in ovarian cystadenomas, low-malignant-potential tumors, and invasive carcinomas”. Gynecol. Oncol., 1999, 74, 338.

[46] Park T.W., Riethdorf S., Riethdorf L., Löning T., Jänicke F.: “Differenrial telomerase activity expression of the telomerase catalytic sub-unit and telomerase-RNA in ovarian tumors”. Int. J. Cancer, 1999, 84, 426.

[47] Braunstein I., Cohen-Barak O., Shachaf C., Ravel Y., Yalon-Hacohen M., Mills G.B., et al.: “Human Telomerase Reverse Transcriptase Promoter Regulation in Normal and Malignant Human Ovarian Epithelial Cells”. Cancer Res., 2001, 61, 5529.

[48] Brustmann H.: “Immunohistochemical detection of human telomerase reverse transcriptase (hTERT) and c-kit in serous ovarian carcinoma: A clinicopathologic study”. Gynecol. Oncol., 2005, 98, 396.

[49] Tantbirojn P., Triratanachat S., Trivijitsilp P., Niruthisard S.: “Human telomerase reverse transcriptase (hTERT) expression in borderline ovarian tumors: An immunohistochemical study”. J. Med. Assoc. Thai., 2009, 92, 308.

[50] Hoos A., Hepp H.H., Kaul S., Ahlert T., Bastert G., Wallwiener D.: “Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer”. Int. J. Cancer, 1998, 79, 8.

[51] Nawaz S., Hashizumi T.L., Markham N.E., Shroyer A.L., Shroyer K.R.: “Telomerase expression in human breast cancer with and without lymph node metastases”. Am. J. Clin. Pathol. 1997, 107, 542

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top