Article Data

  • Views 744
  • Dowloads 157

Original Research

Open Access

Oleic acid promotes the development of endometrial cancer by up-regulating KLF4 expression

  • J. Feng1
  • J. Wu1
  • M. Zhang1
  • J. Wang1
  • K. Chen1
  • X. Li1
  • J. Xie1
  • J. Zhang1
  • C. Wang1,*,

1Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China

DOI: 10.31083/j.ejgo.2020.03.5241 Vol.41,Issue 3,June 2020 pp.432-438

Submitted: 11 April 2019 Accepted: 15 July 2019

Published: 15 June 2020

*Corresponding Author(s): C. Wang E-mail: wangcuizhe905@163.com

Abstract

Objective: To investigate the role and possible molecular mechanism of the transcription factor Krüppel-like factor 4 (KLF4) in the biological phenotype of endometrial cancer cells following induction by oleic acid (OA). Materials and Methods: Ishikawa endometrial cancer cells were grown in vitro with different concentrations of oleic acid. Cell proliferation was measured using the Counting Kit-8 (CCK-8) assay. Cell migration and invasion were evaluated by transwell chamber assay and scratch assay, respectively. The mRNA and protein expression levels of KLF4, ERα, Bcl2, MMP1, MMP9, were evaluated by qRT-PCR and Western blot, respectively. Results: The expression levels of KLF4, ERα, Bcl2, MMP1 and MMP9 increased significantly (p < 0.05) upon stimulation of the endometrial cancer cells with oleic acid (200 µM), together with the migration and invasion abilities of the cells (p < 0.05). Up-regulation of KLF4 caused the expression of ERα, Bcl2 and MMP9 to increase significantly (p < 0.05), whereas down-regulation of KLF4 caused the expression of ERα, Bcl2, MMP1 and MMP9 to significantly decrease (p < 0.05). The increased expression levels of ERα, Bcl2, MMP1 and MMP9 upon 200 µM oleic acid stimulation were significantly blocked (p < 0.05) by down-regulation of KLF4. Conclusion: oleic acid promotes the expression of ERα, Bcl2, MMP1 and MMP9 via up-regulation of KLF4, thus resulting in increased migration and invasion abilities of endometrial cancer cells.

Keywords

OA; KLF4; Endometrial cancer; Migration; Invasion

Cite and Share

J. Feng, J. Wu,M. Zhang,J. Wang,K. Chen,X. Li,J. Xie,J. Zhang,C. Wang. Oleic acid promotes the development of endometrial cancer by up-regulating KLF4 expression. European Journal of Gynaecological Oncology. 2020. 41(3);432-438.

References

[1] Parkin D.M., Bray F., Ferlay J., Pisani P.: “Global cancer statistics, 2002”. CA Cancer J. Clin., 2005, 55, 74.

[2] Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A.: “Global cancer statistics, 2012”. CA Cancer J. Clin., 2015, 65, 87.

[3] Greenwald Z.R., Huang L.N., Wissing M.D., Franco E.L., Gotlieb W.H: “Does hormonal therapy for fertility preservation affect the survival of young women with early-stage endometrial cancer?” Cancer, 2017, 123, 1545.

[4] Chathyan P., Clifford J.B., Helen R.G: “Aging, adipose tissue, fatty acids and inflammation”. Biogerontology, 2015, 16, 235.

[5] Nomura D.K., Long J.Z., Niessen S., Hoover H.S., Ng S.W., Cravatt B.F.: “Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis”. Cell, 2010, 140, 49.

[6] Przybytkowski E., Joly E., Nolan C.J., Hardy S., Francoeur A.M., Langelier Y., Prentki M.: “Upregulation of cellular triacylglycerol-free fatty acid cycling by oleate is associated with long-term serum-free survival of human breast cancer cells”. Biochem. Cell. Biol., 2007, 85, 301.

[7] Liotti A., Cosimato V., Mirra P., Calì G., Conza D., Secondo A., et al: “Oleic acid promotes prostate cancer malignant phenotype via the G protein-coupled receptor FFA1/GPR40”. J. Cell. Physiol., 2018, 233, 7367.

[8] Yang P., Su C., Luo X., Zeng H., Zhao L., Wei L., et al.: “Di- etary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway”. Can- cer Lett., 2018, 438, 76.

[9] Mcconnell B.B., Yang V.W.: “Mammalian Krüppel-like factors in health and diseases”. Physiol. Rev., 2010, 90, 1337.

[10] Birsoy K., Chen Z., Friedman J.: “Transcriptional regulation of adipogenesis by KLF4”. Cell Metab., 2008, 7, 339.

[11] Xu Q., Liu M., Zhang J., Xue L., Zhang G., Hu C., et al: “Overex- pression of KLF4 promotes cell senescence through microRNA- 203-survivin-p21 pathway”. Oncotarget, 2016, 7, 60290.

[12] Wang B., Zhao M.Z., Cui N.P., Lin D.D., Zhang A.Y., Qin Y., et al.: “Krüppel-like factor 4 induces apoptosis and inhibits tumorigenic progression in SK-BR-3 breast cancer cells”. FEBS Open Bio., 2015, 5, 147.

[13] Engin A.: “Fat Cell and Fatty Acid Turnover in Obesity”. Adv. Exp. Med. Biol., 2017, 960, 135.

[14] Lv W., Yang T.: “Identification of possible biomarkers for breast cancer from free fatty acid profiles determined by GC-MS and multivariate statistical analysis”. Clin. Biochem., 2012, 45, 127.

[15] ‘Haggerty A.F., Sarwer D.B., Schmitz K.H., Ko E.M., Allison K.C., Chu C.S.: “Obesity and Endometrial Cancer: A Lack of Knowledge but Opportunity for Intervention”. Nutr. Cancer, 2017, 69, 990.

[16] Zhao H., Pflug B.R., Lai X., Wang M.: “Metabolic and molecular regulation of dietary polyunsaturated fatty acids on prostate cancer”. Proteomics Clin. Appl., 2016, 10, 267.

[17] Fazio C., Piazzi G., Vitaglione P., Fogliano V., Munarini A., Prossomariti A., et al.: “Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells”. Sci. Rep., 2016, 6, 20670.

[18] Xia S.H., Wang J., Kang J.X.: “Decreased n-6 /n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by down regulation of cell adhesion /invasion-related genes”. Carcinogene- sis, 2005, 26, 779.

[19] Blanckaert V., Ulmann L., Mimouni V., Antol J., Brancquart L., Chénais B.: “Docosahexaenoic acid intake decreases proliferation,increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231”. Int. J. Oncol., 2010, 36 737.

[20] Kotronen A., Seppänen-Laakso T., Westerbacka J., Kiviluoto T., Arola J., Ruskeepää A.L., et al.: “Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum”. Obesity (Silver Spring), 2010, 18, 937.

[21] Ben Fradj M.K., Ouanes Y., Hadj-Taieb S., Sallemi A., Kallel A., Jemaa R., et al.: “Decreased Oleic Acid and Marine n-3 Polyunsaturated Fatty Acids in Tunisian Patients with Urothelial Bladder Cancer”. Nutr Cancer, 2018, 70, 1043.

[22] Li S., Zhou Q., He H., Zhao Y., Liu Z.: “Peroxisome proliferator-activated receptor γ agonists induce cell cycle arrest through transcriptional regulation of Kruppel-like factor 4 (KLF4)”. J. Biol. Chem., 2013, 288, 4076.

[23] Zhang N., Zhang J., Shuai L., Zha L., He M., Huang Z., Wang Z.: “Kruppel-like factor 4 negatively regulates beta-catenin expression and inhibits the proliferation, invasion and metastasis of gastric cancer”. Int. J. Oncol., 2012, 40, 2038.

[24] Li Q., Gao Y., Jia Z., Mishra L., Guo K., Li Z., et al.: “Dysregulated Krüppel-like factor 4 and vitamin D receptor signaling contribute to progression of hepatocellular carcinoma”. Gastroenterology, 2012, 143, 799.

[25] Ohnishi S., Ohnami S., Laub F., Aoki K., Suzuki K., Kanai Y., et al.: “Downregulation and growth inhibitory effect of epithelialtype Kruppellike transcription factor KLF4, but not KLF5, in bladder cancer”. Biochem. Biophys. Res. Commun., 2003, 308, 251.

[26] Hu W., Hofstetter W.L.: “Putative tumor-suppressive function of kruppel-like factor 4 in primary lung carcinoma”. Clin. Cancer Res., 2009, 15, 5688.

[27] Le Magnen C., Bubendorf L., Ruiz C., Zlobec I., Bachmann A., Heberer M., et al.: “Klf4 transcription factor is expressed in the cytoplasm of prostate cancer cells”. Eur. J. Cancer, 2013, 49, 955.

[28] Nagata T., Shimada Y., Sekine S., Hori R., Matsui K., Okumura T., et al.: “Prognostic significance of NANOG and KLF4 for breast cancer”. Breast Cancer, 2014, 21, 96.

[29] Sunaga H., Matsui H., Anjo S., Syamsunarno M.R., Koitabashi N., Iso T., et al.: “Elongation of Long-Chain Fatty Acid Family Member 6 (Elovl6)-Driven Fatty Acid Metabolism Regulates Vascular Smooth Muscle Cell Phenotype Through AMP-Activated Protein Kinase/Krüppel-Like Factor 4 (AMPK/KLF4) Signaling”. J. Am. Heart Assoc., 2016, 5, 4014.

[30] Hara T., Kashihara D., Ichimura A., Kimura I., Tsujimoto G., Hira- sawa A: “Role of free fatty acid receptors in the regulation of energy metabolism”. Biochim. Biophys. Acta, 2014, 1841, 1292.

[31] Hirasawa A., Hara T., Katsuma S., Adachi T., Tsujimoto G.: “Free fatty acid receptors and drug discovery”. Biol. Pharm. Bull., 2008, 31, 1847.

[32] Hardy S., St-Onge G.G., Joly E., Langelier Y., Prentki M.: “Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40”. J. Biol. Chem., 2005, 280, 13285.

[33] Liu Z., Hopkins M.M., Zhang Z, Quisenberry C.B., Fix L.C., Galvan B.M., Meier K.E.: “Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells”. J. Pharmacol. Exp. Ther., 2015, 352, 380.

[34] Nehra D., Pan A.H., Le H.D., Fallon E.M., Carlson S.J., Kalish B.T., Puder M.: “Docosahexaenoic acid, G protein-coupled recep- tors, and melanoma: is G protein-coupled receptor 40 a potential therapeutic target?”. J. Surg. Res., 2014, 188, 451.

[35] Ishii S., Hirane M., Kato S., Fukushima N., Tsujiuchi T.: “Opposite effects of GPR120 and GPR40 on cell motile activity induced by ethionine in liver epithelial cells”. Biochem. Biophys. Res. Commun., 2015, 456, 135.

[36] Wu Q., Wang H., Zhao X., Shi Y., Jin M., Wan B., et al.: “Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma”. Oncogene, 2013, 32, 5541.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top