Article Data

  • Views 707
  • Dowloads 112

Original Research

Open Access

Phenotypic differences of tecidual TDCs obtained from breast cancer mice

  • Polyana Barbosa Silva1
  • Millena Prata Jammal1,3
  • Márcia Antoniazi Michelin1,2
  • Eddie Fernando Cândido Murta1,3,*,

1Reseach Institute of Oncology (IPON) - Federal University of The Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil

2Discipline of Immunology, Federal University of The Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil

3Discipline of Gynecology and Obstetrics, Federal University of The Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil

DOI: 10.31083/j.ejgo.2020.05.5437 Vol.41,Issue 5,October 2020 pp.689-698

Submitted: 21 November 2019 Accepted: 03 April 2020

Published: 15 October 2020

*Corresponding Author(s): Eddie Fernando Cândido Murta E-mail: eddiemurta@mednet.com.br

Abstract

Objective: To evaluate TDC expression by flow cytometry for surface markers (CD4, CD8 and CD86), transcription factors (Tbet, Foxp3, Gata3 and Rorγt), and cytokines (IFN-γ, TNF-α, IL-10, IL-12 and IL-17) in spleen, liver, lymph node, bone marrow and tumor of 4T1 induced and healthy mice. Results: TDC are more frequent in lymph nodes in the control and tumor groups, compared to the other environments studied (p < 0.0001). When we compare the expression of surface markers between control and 4T1 induced groupswe noted decreased CD4 TDC expression in liver (p = 0.0001), and the same with CD8 TDC expression in spleen (p = 0.0012) and liver (p = 0.0028), as well as the expression of CD86 TDC in spleen and liver (p = 0.0337), in the 4T1-induced tumor group. When comparing transcription factors, there was a decrease TDC Tbet and TDC Foxp3 in spleen and liver (p = 0.0001); and the same with TDC Gata3 in liver (p = 0.0028), and increase in TDC Rorγt in bone marrow in the tumor group (p < 0.0001). Regarding cytokines, we found decreased IFN-γ TDC in spleen (p < 0.0001) and bone marrow (p = 0.0002), and the same with TNF-α TDC in spleen and liver (p < 0.0001), as well as the expression of IL-10 TDC in spleen (p < 0.0001), liver (p < 0.0001) and bone marrow (p < 0,001), of IL-12 TDC in spleen and bone marrow (p < 0,001), and IL-17 TDC in spleen and liver (p < 0,001) in the 4T1-induced tumor group in all comparisons. Phenotypic changes may be driven by the tissue microenvironment in the presence of the tumor. Directions are needed to understand the functionality associated with possible antitumor immunotherapy.


Keywords

TDC cells; Breast cancer; Tissue microenvironment; Antitumor immune response.


Cite and Share

Polyana Barbosa Silva,Millena Prata Jammal,Márcia Antoniazi Michelin,Eddie Fernando Cândido Murta. Phenotypic differences of tecidual TDCs obtained from breast cancer mice. European Journal of Gynaecological Oncology. 2020. 41(5);689-698.

References

[1] Kuka M, Munitic I., Ashwell J.D.: “Identification and characteri-zation of polyclonal αβ-T cells with dendritic cell properties”. Nat Commun. 2012, 3, 1223.

[2] Kuka M., Ashwell J.D.: “A method for high purity sorting of rare cell subsets applied to TDC”. J Immunol Methods. 2013, 400-401, 111.

[3] Cruz M.S., Diamond A., Russell A., Jameson J.M.: “Human αβ and γδ T Cells in Skin Immunity and Disease”. Front Immunol. 2018, 9, 1304.

[4] Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y-J, et al.: “Immunobiology of Dendritic Cells”. Annual Review of Immunology. 2000, 18, 767.

[5] Laydon D.J., Bangham C.R.M., Asquith B.: “Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach”. Philos Trans R Soc Lond B Biol Sci. 2015, 370, 20140291.

[6] Joffre O., Nolte M.A., Spörri R., Sousa C.R.E.: “Inflammatory sig-nals in dendritic cell activation and the induction of adaptive immunity”. Immunological Reviews. 2009, 227, 234.

[7] Beham A.W., Puellmann K., Laird R., Fuchs T., Streich R., Breysach C., et al.: “A TNF-regulated recombinatorial macrophage immune receptor implicated in granuloma formation in tuberculosis”. PLoS Pathog. 2011, 7, e1002375.

[8] Fuchs T., Puellmann K., Schneider S., Kruth J., Schulze T.J., Neu-maier M., et al.: “An autoimmune double attack”. The Lancet. 2012, 379, 1364.

[9] Fuchs T., Puellmann K., Emmert A., Fleig J., Oniga S., Laird R., et al.: “The macrophage-TCRαβ is a cholesterol-responsive combinatorial immune receptor and implicated in atherosclerosis”. Biochemical and Biophysical Research Communications. 2015, 456, 59.

[10] Fuchs T., Hahn M., Riabov V., Yin S., Kzhyshkowska J., Busch S., et al.: “A combinatorial αβ T cell receptor expressed by macrophages in the tumor microenvironment”. Immunobiology. 2017, 222, 39.

[11] Garcia C.M.S., Araújo M.R.D., Lopes M.T.P., Ferreira M.A.N.D., Cassali G.D.: “Morphological and immunophenotipical characterization of murine mammary carcinoma 4t1”. 2014, 7, 158.

[12] Madera L., Greenshields A., Coombs M.R.P., Hoskin D.W.: “4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses”. PLoS One. 2015, 10, e0133385.

[13] DuPré S.A., Redelman D., Hunter K.W.: “The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci”. Int J Exp Pathol. 2007, 88, 351.

[14] Lasso P., Llano Murcia M., Sandoval T.A., Urueña C., Barreto A., Fiorentino S.: “Breast Tumor Cells Highly Resistant to Drugs Are Controlled Only by the Immune Response Induced in an Immunocompetent Mouse Model”. Integr Cancer Ther. 2019, 18, 1534735419848047.

[15] Jovanovic I., Radosavljevic G., Mitrovic M., Juranic V.L., McKenzie A.N.J., Arsenijevic N., et al.: “ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma”. Eur J Immunol. 2011, 41, 1902.

[16] Dexter D.L.J., Kowalski H.M., Blazar B.A., Fligiel Z., Heppner G.H.H. “Heterogeneity of tumor cells from a single mouse mammary tumor”. 1978, 38, 3174.

[17] Heppner G.H., Dexter D.L., Denucci T., Miller F.R., Calabresi P. “Heterogeneity in drug sensitivity among tumor cell subpopulations of a single mammary tumor”. 1978, 38, 3758.

[18] Heppner G.H., Miller F.R., Shekhar P.M.: “Nontransgenic models of breast cancer”. Breast Cancer Res. 2000, 2, 331.

[19] Morecki S., Yacovlev L., Slavin S.: “Effect of indomethacin on tumorigenicity and immunity induction in a murine model of mammary carcinoma”. International Journal of Cancer. 1998, 75, 894.

[20] Canadian Council on Animal Care (CCAC). CCAC guidelines on : euthanasia of animals used in science [Internet]. 2017. 1–32p. Available from: http://ccac.ca/Documents/Standards/Guidelines/Euthanasia.pdf

[21] Druzd D., Matveeva O., Ince L., Harrison U., He W., Schmal C., et al.: “Lymphocyte Circadian Clocks Control Lymph Node Trafficking and Adaptive Immune Responses”. Immunity. 2017, 46, 120.

[22] Riazi Rad F., Ajdary S., Omranipour R., Alimohammadian M.H., Hassan Z.M.: “Comparative analysis of CD4+ and CD8+ T cells in tumor tissues, lymph nodes and the peripheral blood from patients with breast cancer”. Iran Biomed J. 2015, 19, 35.

[23] Ma C., Kesarwala A.H., Eggert T., Medina-Echeverz J., Kleiner D. E., Jin P., et al.: “NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis”. Nature. 2016, 531, 253.

[24] Morsy M.A., Norman P.J., Mitry R., Rela M., Heaton N.D., Vaughan R.W.: “Isolation, purification and flow cytometric analysis of human intrahepatic lymphocytes using an improved technique”. Laboratory Investigation. 2005, 85, 285.

[25] Wang Y., Zhang C.: “The Roles of Liver-Resident Lymphocytes in Liver Diseases”. Front Immunol. 2019, 10, 1582.

[26] Driessens G., Kline J., Gajewski T.F.: “Costimulatory and coin-hibitory receptors in antitumor immunity”. Immunological reviews. 2009, 229, 126.

[27] Mebius R.E., Kraal G.: “Structure and function of the spleen”. Na-ture Reviews Immunology. 2005, 5, 606.

[28] Lacotte S., Slits F., Orci L.A., Meyer J., Oldani G., Delaune V., et al.: “Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma”. Oncoimmunology. 2016, 5, e1234565.

[29] Hertweck A., Evans C.M., Eskandarpour M., Lau J.C.H., Oleinika K., Jackson I., et al.: “T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex”. Cell Rep. 2016, 15, 2756.

[30] Kachler K., Holzinger C., Trufa D.I., Sirbu H., Finotto S.: “The role of Foxp3 and Tbet coexpressing Treg cells in lung carcinoma”. Oncoimmunology. 2018, 61, e1456612.

[31] Samson S.I., Richard O., Tavian M., Ranson T., Vosshenrich C.A.J., Colucci F., et al.: “GATA-3 Promotes Maturation, IFN-γ Production, and Liver-Specific Homing of NK Cells”. Immunity. 2003, 19, 701.

[32] Takaku M., Grimm S.A., Wade P.A.: “GATA3 in Breast Cancer: Tumor Suppressor or Oncogene?”. Gene Expr. 2015, 16, 163.

[33] Protti M.P., De Monte L.: “Cross-talk within the tumor microenvironment mediates Th2-type inflammation in pancreatic cancer”. Oncoimmunology. 2012, 1, 89.

[34] Wei S., Zhong L., Wang X., Zhang W.: “Low expression of GATA3 promotes cell proliferation and metastasis in gastric cancer”. Cancer Manag Res. 2017, 9, 769.

[35] Kargbo R.B.: “ROR(GMMA)T Modulating Activity for the Treatment of Cancers”. ACS Med Chem Lett. 2018, 9, 590.

[36] Wang J., Zou J.X., Xue X., Cai D., Zhang Y., Duan Z., et al.: “ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer”. Nature Medicine. 2016, 5, 1.

[37] Yang L., Wei Y., Sun Y., Shi W., Yang J., Zhu L., et al.: “Interferon-gamma Inhibits Melanogenesis and Induces Apoptosis in Melanocytes: A Pivotal Role of CD8+ Cytotoxic T Lymphocytes in Vitiligo”. Acta Dermato Venereologica. 2015, 95, 664.

[38] Tanner S.M., Daft J.G., Hill S.A., Martin C.A., Lorenz R.G.: “Al-tered T-Cell Balance in Lymphoid Organs of a Mouse Model of Colorectal Cancer”. J Histochem Cytochem. 2016, 64, 753.

[39] Lebrec H., Ponce R., Preston B.D., Iles J., Born T.L., Hooper M.: “Tumor necrosis factor, tumor necrosis factor inhibition, and cancer risk”. Current Medical Research and Opinion. 2015, 31, 557.

[40] Johannes C.M., Musser M.L.: “Anorexia and the Cancer Patient”. Veterinary Clinics of North America: Small Animal Practice. 2019, 49, 837.

[41] Kastl L., Sauer S.W., Ruppert T., Beissbarth T., Becker M.S., Süss D., et al.: “TNF-α mediates mitochondrial uncoupling and enhances ROS-dependent cell migrationviaNF-κB activation in liver cells”. FEBS Letters. 2013, 588, 175.

[42] Mannino M.H., Zhu Z., Xiao H., Bai Q., Wakefield M.R., Fang Y.: “The paradoxical role of IL-10 in immunity and cancer”. Cancer Letters. 2015, 367, 103.

[43] Taleb S., Tedgui A., Mallat Z.: “IL-17 and Th17 Cells in Atheroscle-rosis”. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015, 35, 258.

[44] Yang L., Liu H., Zhang L., Hu J., Chen H., Wang L., et al.: “Effect of IL-17 in the development of colon cancer in mice”. Oncol Lett. 2016, 12, 4929.


Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top